Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386378052> ?p ?o ?g. }
- W4386378052 endingPage "486" @default.
- W4386378052 startingPage "486" @default.
- W4386378052 abstract "Accurate segmentation of lesions can provide strong evidence for early skin cancer diagnosis by doctors, enabling timely treatment of patients and effectively reducing cancer mortality rates. In recent years, some deep learning models have utilized complex modules to improve their performance for skin disease image segmentation. However, limited computational resources have hindered their practical application in clinical environments. To address this challenge, this paper proposes a lightweight model, named GSCEU-Net, which is able to achieve superior skin lesion segmentation performance at a lower cost. GSCEU-Net is based on the U-Net architecture with additional enhancements. Firstly, the partial convolution (PConv) module, proposed by the FasterNet model, is modified to an SConv module, which enables channel segmentation paths of different scales. Secondly, a newly designed Ghost SConv (GSC) module is proposed for incorporation into the model’s backbone, where the Separate Convolution (SConv) module is aided by a Multi-Layer Perceptron (MLP) and the output path residuals from the Ghost module. Finally, the Efficient Channel Attention (ECA) mechanism is incorporated at different levels into the decoding part of the model. The segmentation performance of the proposed model is evaluated on two public datasets (ISIC2018 and PH2) and a private dataset. Compared to U-Net, the proposed model achieves an IoU improvement of 0.0261 points and a DSC improvement of 0.0164 points, while reducing the parameter count by 190 times and the computational complexity by 170 times. Compared to other existing segmentation models, the proposed GSCEU-Net model also demonstrates superiority, along with an advanced balance between the number of parameters, complexity, and segmentation performance." @default.
- W4386378052 created "2023-09-02" @default.
- W4386378052 creator A5002555209 @default.
- W4386378052 creator A5030607091 @default.
- W4386378052 creator A5044742951 @default.
- W4386378052 creator A5071832001 @default.
- W4386378052 creator A5071862569 @default.
- W4386378052 creator A5072220253 @default.
- W4386378052 creator A5075906694 @default.
- W4386378052 date "2023-09-01" @default.
- W4386378052 modified "2023-09-28" @default.
- W4386378052 title "GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements" @default.
- W4386378052 cites W1901129140 @default.
- W4386378052 cites W1986985050 @default.
- W4386378052 cites W2033870996 @default.
- W4386378052 cites W2035427371 @default.
- W4386378052 cites W2049748121 @default.
- W4386378052 cites W2061253660 @default.
- W4386378052 cites W2099210025 @default.
- W4386378052 cites W2142259554 @default.
- W4386378052 cites W2183182206 @default.
- W4386378052 cites W2752782242 @default.
- W4386378052 cites W2800661075 @default.
- W4386378052 cites W2884585870 @default.
- W4386378052 cites W2911188335 @default.
- W4386378052 cites W2911783192 @default.
- W4386378052 cites W2923997689 @default.
- W4386378052 cites W2962914239 @default.
- W4386378052 cites W2963418739 @default.
- W4386378052 cites W2967733054 @default.
- W4386378052 cites W2990040069 @default.
- W4386378052 cites W2996290406 @default.
- W4386378052 cites W3008652188 @default.
- W4386378052 cites W3013529009 @default.
- W4386378052 cites W3022511023 @default.
- W4386378052 cites W3034552520 @default.
- W4386378052 cites W3035414587 @default.
- W4386378052 cites W3084798277 @default.
- W4386378052 cites W3101294892 @default.
- W4386378052 cites W3146366485 @default.
- W4386378052 cites W4295934721 @default.
- W4386378052 cites W4312638118 @default.
- W4386378052 cites W4313527340 @default.
- W4386378052 cites W4313585330 @default.
- W4386378052 cites W4361007512 @default.
- W4386378052 cites W4386047745 @default.
- W4386378052 doi "https://doi.org/10.3390/info14090486" @default.
- W4386378052 hasPublicationYear "2023" @default.
- W4386378052 type Work @default.
- W4386378052 citedByCount "0" @default.
- W4386378052 crossrefType "journal-article" @default.
- W4386378052 hasAuthorship W4386378052A5002555209 @default.
- W4386378052 hasAuthorship W4386378052A5030607091 @default.
- W4386378052 hasAuthorship W4386378052A5044742951 @default.
- W4386378052 hasAuthorship W4386378052A5071832001 @default.
- W4386378052 hasAuthorship W4386378052A5071862569 @default.
- W4386378052 hasAuthorship W4386378052A5072220253 @default.
- W4386378052 hasAuthorship W4386378052A5075906694 @default.
- W4386378052 hasBestOaLocation W43863780521 @default.
- W4386378052 hasConcept C108583219 @default.
- W4386378052 hasConcept C138885662 @default.
- W4386378052 hasConcept C14166107 @default.
- W4386378052 hasConcept C153180895 @default.
- W4386378052 hasConcept C154945302 @default.
- W4386378052 hasConcept C199360897 @default.
- W4386378052 hasConcept C2524010 @default.
- W4386378052 hasConcept C2776401178 @default.
- W4386378052 hasConcept C2777735758 @default.
- W4386378052 hasConcept C33923547 @default.
- W4386378052 hasConcept C41008148 @default.
- W4386378052 hasConcept C41895202 @default.
- W4386378052 hasConcept C45347329 @default.
- W4386378052 hasConcept C50644808 @default.
- W4386378052 hasConcept C60908668 @default.
- W4386378052 hasConcept C81363708 @default.
- W4386378052 hasConcept C89600930 @default.
- W4386378052 hasConceptScore W4386378052C108583219 @default.
- W4386378052 hasConceptScore W4386378052C138885662 @default.
- W4386378052 hasConceptScore W4386378052C14166107 @default.
- W4386378052 hasConceptScore W4386378052C153180895 @default.
- W4386378052 hasConceptScore W4386378052C154945302 @default.
- W4386378052 hasConceptScore W4386378052C199360897 @default.
- W4386378052 hasConceptScore W4386378052C2524010 @default.
- W4386378052 hasConceptScore W4386378052C2776401178 @default.
- W4386378052 hasConceptScore W4386378052C2777735758 @default.
- W4386378052 hasConceptScore W4386378052C33923547 @default.
- W4386378052 hasConceptScore W4386378052C41008148 @default.
- W4386378052 hasConceptScore W4386378052C41895202 @default.
- W4386378052 hasConceptScore W4386378052C45347329 @default.
- W4386378052 hasConceptScore W4386378052C50644808 @default.
- W4386378052 hasConceptScore W4386378052C60908668 @default.
- W4386378052 hasConceptScore W4386378052C81363708 @default.
- W4386378052 hasConceptScore W4386378052C89600930 @default.
- W4386378052 hasIssue "9" @default.
- W4386378052 hasLocation W43863780521 @default.
- W4386378052 hasOpenAccess W4386378052 @default.
- W4386378052 hasPrimaryLocation W43863780521 @default.
- W4386378052 hasRelatedWork W2295021132 @default.