Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386380260> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4386380260 endingPage "3692" @default.
- W4386380260 startingPage "3692" @default.
- W4386380260 abstract "The research focuses on the analysis of seismic data, specifically targeting the detection, edge segmentation, and classification of seismic images. These processes are fundamental in image processing and are crucial in understanding the stratigraphic structure and identifying oil and natural gas resources. However, there is a lack of sufficient resources in the field of seismic image detection, and interpreting 2D seismic image slices based on 3D seismic data sets can be challenging. In this research, image segmentation involves image preprocessing and the use of a U-net network. Preprocessing techniques, such as Gaussian filter and anisotropic diffusion, are employed to reduce blur and noise in seismic images. The U-net network, based on the Canny descriptor is used for segmentation. For image classification, the ResNet-50 and Inception-v3 models are applied to classify different types of seismic images. In image detection, Tchebichef invariants are computed using the Tchebichef polynomials’ recurrence relation. These invariants are then used in an optimized multi-class SVM network for detecting and classifying various types of seismic images. The promising results of the SVM model based on Tchebichef invariants suggest its potential to replace Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs) for seismic image detection. This approach offers a more efficient and dependable solution for seismic image analysis in the future." @default.
- W4386380260 created "2023-09-02" @default.
- W4386380260 creator A5029727932 @default.
- W4386380260 creator A5065264588 @default.
- W4386380260 date "2023-08-31" @default.
- W4386380260 modified "2023-10-01" @default.
- W4386380260 title "Seismic Image Identification and Detection Based on Tchebichef Moment Invariant" @default.
- W4386380260 cites W1649590900 @default.
- W4386380260 cites W1901129140 @default.
- W4386380260 cites W1976602790 @default.
- W4386380260 cites W1977251075 @default.
- W4386380260 cites W1982471090 @default.
- W4386380260 cites W1982924991 @default.
- W4386380260 cites W2000900208 @default.
- W4386380260 cites W2038147191 @default.
- W4386380260 cites W2063600526 @default.
- W4386380260 cites W2065270877 @default.
- W4386380260 cites W2081223027 @default.
- W4386380260 cites W2086936614 @default.
- W4386380260 cites W2087671141 @default.
- W4386380260 cites W2098531078 @default.
- W4386380260 cites W2100245965 @default.
- W4386380260 cites W2102238397 @default.
- W4386380260 cites W2124041826 @default.
- W4386380260 cites W2133665775 @default.
- W4386380260 cites W2145023731 @default.
- W4386380260 cites W2153118043 @default.
- W4386380260 cites W2159498975 @default.
- W4386380260 cites W2280342932 @default.
- W4386380260 cites W2803511245 @default.
- W4386380260 cites W2807914764 @default.
- W4386380260 cites W2810812775 @default.
- W4386380260 cites W2887450173 @default.
- W4386380260 cites W2891255706 @default.
- W4386380260 cites W2911424749 @default.
- W4386380260 cites W2960152578 @default.
- W4386380260 cites W2967741086 @default.
- W4386380260 cites W3038552293 @default.
- W4386380260 cites W3087394319 @default.
- W4386380260 cites W3089376548 @default.
- W4386380260 cites W3121847163 @default.
- W4386380260 cites W3169279223 @default.
- W4386380260 cites W4200156120 @default.
- W4386380260 cites W4205660737 @default.
- W4386380260 cites W4210291024 @default.
- W4386380260 cites W4283778196 @default.
- W4386380260 cites W4327966058 @default.
- W4386380260 cites W4376491330 @default.
- W4386380260 cites W637015574 @default.
- W4386380260 cites W70870197 @default.
- W4386380260 doi "https://doi.org/10.3390/electronics12173692" @default.
- W4386380260 hasPublicationYear "2023" @default.
- W4386380260 type Work @default.
- W4386380260 citedByCount "0" @default.
- W4386380260 crossrefType "journal-article" @default.
- W4386380260 hasAuthorship W4386380260A5029727932 @default.
- W4386380260 hasAuthorship W4386380260A5065264588 @default.
- W4386380260 hasBestOaLocation W43863802601 @default.
- W4386380260 hasConcept C12267149 @default.
- W4386380260 hasConcept C124504099 @default.
- W4386380260 hasConcept C153180895 @default.
- W4386380260 hasConcept C154945302 @default.
- W4386380260 hasConcept C31972630 @default.
- W4386380260 hasConcept C34736171 @default.
- W4386380260 hasConcept C41008148 @default.
- W4386380260 hasConcept C89600930 @default.
- W4386380260 hasConceptScore W4386380260C12267149 @default.
- W4386380260 hasConceptScore W4386380260C124504099 @default.
- W4386380260 hasConceptScore W4386380260C153180895 @default.
- W4386380260 hasConceptScore W4386380260C154945302 @default.
- W4386380260 hasConceptScore W4386380260C31972630 @default.
- W4386380260 hasConceptScore W4386380260C34736171 @default.
- W4386380260 hasConceptScore W4386380260C41008148 @default.
- W4386380260 hasConceptScore W4386380260C89600930 @default.
- W4386380260 hasIssue "17" @default.
- W4386380260 hasLocation W43863802601 @default.
- W4386380260 hasOpenAccess W4386380260 @default.
- W4386380260 hasPrimaryLocation W43863802601 @default.
- W4386380260 hasRelatedWork W1582206143 @default.
- W4386380260 hasRelatedWork W1669643531 @default.
- W4386380260 hasRelatedWork W1982826852 @default.
- W4386380260 hasRelatedWork W2005437358 @default.
- W4386380260 hasRelatedWork W2008656436 @default.
- W4386380260 hasRelatedWork W2023558673 @default.
- W4386380260 hasRelatedWork W2110230079 @default.
- W4386380260 hasRelatedWork W2134924024 @default.
- W4386380260 hasRelatedWork W2517104666 @default.
- W4386380260 hasRelatedWork W2345184372 @default.
- W4386380260 hasVolume "12" @default.
- W4386380260 isParatext "false" @default.
- W4386380260 isRetracted "false" @default.
- W4386380260 workType "article" @default.