Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386386961> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4386386961 endingPage "13" @default.
- W4386386961 startingPage "1" @default.
- W4386386961 abstract "Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression algorithms. In this research, the design of SEA based on different speech models (Laplacian model or Gaussian model) has been implemented using two types of discrete transforms, which are Discrete Tchebichef Transform and Discrete Tchebichef-Krawtchouk Transforms. The proposed estimator consists of dual stages of a wiener filter that can effectively estimate the clean speech signal. The evaluation measures' results show the proposed SEA's ability to enhance the noisy speech signal based on a comparison with other types of speech models and a self-comparison based on different types and levels of noise. The presented algorithm's improvements ratio regarding the average SNRseq are 1.96, 2.12, and 2.03 for Buccaneer, White, and Pink noise, respectively." @default.
- W4386386961 created "2023-09-03" @default.
- W4386386961 creator A5017117569 @default.
- W4386386961 creator A5020675008 @default.
- W4386386961 creator A5025789067 @default.
- W4386386961 creator A5065938165 @default.
- W4386386961 creator A5066824500 @default.
- W4386386961 date "2023-09-01" @default.
- W4386386961 modified "2023-09-29" @default.
- W4386386961 title "Dual Stages of Speech Enhancement Algorithm Based on Super Gaussian Speech Models" @default.
- W4386386961 doi "https://doi.org/10.31026/j.eng.2023.09.01" @default.
- W4386386961 hasPublicationYear "2023" @default.
- W4386386961 type Work @default.
- W4386386961 citedByCount "0" @default.
- W4386386961 crossrefType "journal-article" @default.
- W4386386961 hasAuthorship W4386386961A5017117569 @default.
- W4386386961 hasAuthorship W4386386961A5020675008 @default.
- W4386386961 hasAuthorship W4386386961A5025789067 @default.
- W4386386961 hasAuthorship W4386386961A5065938165 @default.
- W4386386961 hasAuthorship W4386386961A5066824500 @default.
- W4386386961 hasBestOaLocation W43863869611 @default.
- W4386386961 hasConcept C105795698 @default.
- W4386386961 hasConcept C111472728 @default.
- W4386386961 hasConcept C11413529 @default.
- W4386386961 hasConcept C115961682 @default.
- W4386386961 hasConcept C138885662 @default.
- W4386386961 hasConcept C154945302 @default.
- W4386386961 hasConcept C163294075 @default.
- W4386386961 hasConcept C18537770 @default.
- W4386386961 hasConcept C185429906 @default.
- W4386386961 hasConcept C2776182073 @default.
- W4386386961 hasConcept C28490314 @default.
- W4386386961 hasConcept C33923547 @default.
- W4386386961 hasConcept C41008148 @default.
- W4386386961 hasConcept C60048801 @default.
- W4386386961 hasConcept C99498987 @default.
- W4386386961 hasConceptScore W4386386961C105795698 @default.
- W4386386961 hasConceptScore W4386386961C111472728 @default.
- W4386386961 hasConceptScore W4386386961C11413529 @default.
- W4386386961 hasConceptScore W4386386961C115961682 @default.
- W4386386961 hasConceptScore W4386386961C138885662 @default.
- W4386386961 hasConceptScore W4386386961C154945302 @default.
- W4386386961 hasConceptScore W4386386961C163294075 @default.
- W4386386961 hasConceptScore W4386386961C18537770 @default.
- W4386386961 hasConceptScore W4386386961C185429906 @default.
- W4386386961 hasConceptScore W4386386961C2776182073 @default.
- W4386386961 hasConceptScore W4386386961C28490314 @default.
- W4386386961 hasConceptScore W4386386961C33923547 @default.
- W4386386961 hasConceptScore W4386386961C41008148 @default.
- W4386386961 hasConceptScore W4386386961C60048801 @default.
- W4386386961 hasConceptScore W4386386961C99498987 @default.
- W4386386961 hasIssue "09" @default.
- W4386386961 hasLocation W43863869611 @default.
- W4386386961 hasOpenAccess W4386386961 @default.
- W4386386961 hasPrimaryLocation W43863869611 @default.
- W4386386961 hasRelatedWork W2039050846 @default.
- W4386386961 hasRelatedWork W2046186789 @default.
- W4386386961 hasRelatedWork W2396333194 @default.
- W4386386961 hasRelatedWork W2653453860 @default.
- W4386386961 hasRelatedWork W2930648092 @default.
- W4386386961 hasRelatedWork W3203814202 @default.
- W4386386961 hasRelatedWork W4221152531 @default.
- W4386386961 hasRelatedWork W4224947495 @default.
- W4386386961 hasRelatedWork W4312793361 @default.
- W4386386961 hasRelatedWork W4375869276 @default.
- W4386386961 hasVolume "29" @default.
- W4386386961 isParatext "false" @default.
- W4386386961 isRetracted "false" @default.
- W4386386961 workType "article" @default.