Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386387610> ?p ?o ?g. }
- W4386387610 abstract "Abstract The flame of converter mouth can well reflect the change of temperature and composition of molten steel in the furnace. The flame characteristics of converter mouth collected by device can well predict the smelting process of converter. Based on the flame spectrum data set of converter mouth, this paper uses the BEADS algorithm and rough set attribute reduction algorithm optimized by genetic algorithm to extract the features of 2048-dimensional wavelength data. Through the model, eight indexes that contribute greatly to temperature and carbon content are selected, which are f -507, f -520, f -839, f -1073, f -1371, f -1528, f -1727 and f -1826. The MIC coefficients of the eight indicators with temperature and carbon content are calculated, and the MIC coefficients of the variables is small, and the selected indicators are representative. There was a significant correlation between temperature and C content. In BP neural network of temperature prediction model, it is found that the prediction accuracy of the training set is 0.99, the prediction accuracy of the test set is 0.99, the prediction accuracy of the verification set is 0.99, and the prediction accuracy of the whole set is 0.99. Through statistics, it is found that the hit rate of the temperature model in the range of ± 5 K is 88.7%, and the hit rate in the range of ± 10 K is 98.4%. and the RMSE parameter analysis shows that the average prediction error is 3.85 K. In BP neural network of carbon content prediction model, it is found that the prediction accuracy of the training set is 0.99, the prediction accuracy of the test set is 0.99, the prediction accuracy of the verification set is 0.98, and the prediction accuracy of the whole set is 0.99. Through statistics, it is found that the hit rate of the carbon contents model in the range of ± 0.05% is 94.0%, and the hit rate in the range of ± 0.10% is 98.3%, and the RMSE parameter analysis shows that the average prediction error is 0.021%. Finally, the universality of the model is verified by MIV algorithm." @default.
- W4386387610 created "2023-09-03" @default.
- W4386387610 creator A5004605359 @default.
- W4386387610 creator A5009349979 @default.
- W4386387610 creator A5015924291 @default.
- W4386387610 creator A5019087683 @default.
- W4386387610 creator A5062308717 @default.
- W4386387610 date "2023-09-02" @default.
- W4386387610 modified "2023-10-18" @default.
- W4386387610 title "Research on prediction model of converter temperature and carbon content based on spectral feature extraction" @default.
- W4386387610 cites W1965440065 @default.
- W4386387610 cites W2002896448 @default.
- W4386387610 cites W2037542312 @default.
- W4386387610 cites W2051764309 @default.
- W4386387610 cites W2053510362 @default.
- W4386387610 cites W2073125234 @default.
- W4386387610 cites W2079070046 @default.
- W4386387610 cites W2197136578 @default.
- W4386387610 cites W2808690993 @default.
- W4386387610 cites W2896418746 @default.
- W4386387610 cites W2980675863 @default.
- W4386387610 cites W3093507141 @default.
- W4386387610 cites W3111470563 @default.
- W4386387610 cites W3135579765 @default.
- W4386387610 cites W4229016239 @default.
- W4386387610 cites W4285506163 @default.
- W4386387610 cites W4285594468 @default.
- W4386387610 doi "https://doi.org/10.1038/s41598-023-41751-9" @default.
- W4386387610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37660162" @default.
- W4386387610 hasPublicationYear "2023" @default.
- W4386387610 type Work @default.
- W4386387610 citedByCount "0" @default.
- W4386387610 crossrefType "journal-article" @default.
- W4386387610 hasAuthorship W4386387610A5004605359 @default.
- W4386387610 hasAuthorship W4386387610A5009349979 @default.
- W4386387610 hasAuthorship W4386387610A5015924291 @default.
- W4386387610 hasAuthorship W4386387610A5019087683 @default.
- W4386387610 hasAuthorship W4386387610A5062308717 @default.
- W4386387610 hasBestOaLocation W43863876101 @default.
- W4386387610 hasConcept C104779481 @default.
- W4386387610 hasConcept C105795698 @default.
- W4386387610 hasConcept C113196181 @default.
- W4386387610 hasConcept C11413529 @default.
- W4386387610 hasConcept C121332964 @default.
- W4386387610 hasConcept C134306372 @default.
- W4386387610 hasConcept C139945424 @default.
- W4386387610 hasConcept C140205800 @default.
- W4386387610 hasConcept C154945302 @default.
- W4386387610 hasConcept C159985019 @default.
- W4386387610 hasConcept C167085575 @default.
- W4386387610 hasConcept C169903167 @default.
- W4386387610 hasConcept C177264268 @default.
- W4386387610 hasConcept C185592680 @default.
- W4386387610 hasConcept C192562407 @default.
- W4386387610 hasConcept C199360897 @default.
- W4386387610 hasConcept C204323151 @default.
- W4386387610 hasConcept C2778152352 @default.
- W4386387610 hasConcept C2780092901 @default.
- W4386387610 hasConcept C33923547 @default.
- W4386387610 hasConcept C39353612 @default.
- W4386387610 hasConcept C41008148 @default.
- W4386387610 hasConcept C43617362 @default.
- W4386387610 hasConcept C50644808 @default.
- W4386387610 hasConcept C58489278 @default.
- W4386387610 hasConcept C97355855 @default.
- W4386387610 hasConceptScore W4386387610C104779481 @default.
- W4386387610 hasConceptScore W4386387610C105795698 @default.
- W4386387610 hasConceptScore W4386387610C113196181 @default.
- W4386387610 hasConceptScore W4386387610C11413529 @default.
- W4386387610 hasConceptScore W4386387610C121332964 @default.
- W4386387610 hasConceptScore W4386387610C134306372 @default.
- W4386387610 hasConceptScore W4386387610C139945424 @default.
- W4386387610 hasConceptScore W4386387610C140205800 @default.
- W4386387610 hasConceptScore W4386387610C154945302 @default.
- W4386387610 hasConceptScore W4386387610C159985019 @default.
- W4386387610 hasConceptScore W4386387610C167085575 @default.
- W4386387610 hasConceptScore W4386387610C169903167 @default.
- W4386387610 hasConceptScore W4386387610C177264268 @default.
- W4386387610 hasConceptScore W4386387610C185592680 @default.
- W4386387610 hasConceptScore W4386387610C192562407 @default.
- W4386387610 hasConceptScore W4386387610C199360897 @default.
- W4386387610 hasConceptScore W4386387610C204323151 @default.
- W4386387610 hasConceptScore W4386387610C2778152352 @default.
- W4386387610 hasConceptScore W4386387610C2780092901 @default.
- W4386387610 hasConceptScore W4386387610C33923547 @default.
- W4386387610 hasConceptScore W4386387610C39353612 @default.
- W4386387610 hasConceptScore W4386387610C41008148 @default.
- W4386387610 hasConceptScore W4386387610C43617362 @default.
- W4386387610 hasConceptScore W4386387610C50644808 @default.
- W4386387610 hasConceptScore W4386387610C58489278 @default.
- W4386387610 hasConceptScore W4386387610C97355855 @default.
- W4386387610 hasIssue "1" @default.
- W4386387610 hasLocation W43863876101 @default.
- W4386387610 hasLocation W43863876102 @default.
- W4386387610 hasOpenAccess W4386387610 @default.
- W4386387610 hasPrimaryLocation W43863876101 @default.
- W4386387610 hasRelatedWork W2073150707 @default.
- W4386387610 hasRelatedWork W2123844126 @default.
- W4386387610 hasRelatedWork W2127814643 @default.
- W4386387610 hasRelatedWork W2188032833 @default.