Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386392632> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4386392632 abstract "Abstract XGBoost is the optimization of gradient boosting with the best overall performance among machine learning algorithms. By introducing a regularization term into the loss function of gradient boosting, XGBoost can effectively limit the complexity of the model, improve the generalization ability, and solve the overfitting problem. In this paper, XGBoost is first introduced into modeling radio‐frequency (RF) power amplifiers (PA) under different temperatures. Furthermore, the modeling effect of XGBoost is mainly dependent on hyperparameters. As traditional grid search is time‐consuming and labor‐intensive, this paper combines particle swarm optimization (PSO) with XGBoost for searching hyperparameters. The experimental results show that XGBoost can effectively suppress the overfitting problem in gradient boosting while modeling RF PAs in different ambient temperatures. In addition, compared to classic machine learning algorithms, including support vector regression (SVR), gradient boosting, and XGBoost, the proposed PSO‐XGBoost can increase the modeling accuracy by one order of magnitude or more while also increasing the modeling speed by more than one magnitude or more. The PSO‐XGBoost model proposed in this paper can be introduced into modeling other microwave/RF devices and circuits to improve modeling accuracy and reduce modeling time." @default.
- W4386392632 created "2023-09-03" @default.
- W4386392632 creator A5057270742 @default.
- W4386392632 creator A5082114171 @default.
- W4386392632 date "2023-09-02" @default.
- W4386392632 modified "2023-09-27" @default.
- W4386392632 title "<scp>Particle swarm optimization‐XGBoost‐based</scp> modeling of <scp>radio‐frequency</scp> power amplifier under different temperatures" @default.
- W4386392632 cites W2013872183 @default.
- W4386392632 cites W2152195021 @default.
- W4386392632 cites W2162708855 @default.
- W4386392632 cites W2903919711 @default.
- W4386392632 cites W2940010972 @default.
- W4386392632 cites W3000536290 @default.
- W4386392632 cites W3006063106 @default.
- W4386392632 cites W3088753106 @default.
- W4386392632 cites W3102476541 @default.
- W4386392632 cites W3128855577 @default.
- W4386392632 cites W3132618153 @default.
- W4386392632 cites W4246598646 @default.
- W4386392632 cites W4296079469 @default.
- W4386392632 cites W4307291171 @default.
- W4386392632 cites W4312238613 @default.
- W4386392632 cites W4362734894 @default.
- W4386392632 doi "https://doi.org/10.1002/jnm.3168" @default.
- W4386392632 hasPublicationYear "2023" @default.
- W4386392632 type Work @default.
- W4386392632 citedByCount "0" @default.
- W4386392632 crossrefType "journal-article" @default.
- W4386392632 hasAuthorship W4386392632A5057270742 @default.
- W4386392632 hasAuthorship W4386392632A5082114171 @default.
- W4386392632 hasBestOaLocation W43863926321 @default.
- W4386392632 hasConcept C10485038 @default.
- W4386392632 hasConcept C119857082 @default.
- W4386392632 hasConcept C12267149 @default.
- W4386392632 hasConcept C126255220 @default.
- W4386392632 hasConcept C154945302 @default.
- W4386392632 hasConcept C169258074 @default.
- W4386392632 hasConcept C22019652 @default.
- W4386392632 hasConcept C33923547 @default.
- W4386392632 hasConcept C41008148 @default.
- W4386392632 hasConcept C46686674 @default.
- W4386392632 hasConcept C50644808 @default.
- W4386392632 hasConcept C70153297 @default.
- W4386392632 hasConcept C85617194 @default.
- W4386392632 hasConcept C8642999 @default.
- W4386392632 hasConceptScore W4386392632C10485038 @default.
- W4386392632 hasConceptScore W4386392632C119857082 @default.
- W4386392632 hasConceptScore W4386392632C12267149 @default.
- W4386392632 hasConceptScore W4386392632C126255220 @default.
- W4386392632 hasConceptScore W4386392632C154945302 @default.
- W4386392632 hasConceptScore W4386392632C169258074 @default.
- W4386392632 hasConceptScore W4386392632C22019652 @default.
- W4386392632 hasConceptScore W4386392632C33923547 @default.
- W4386392632 hasConceptScore W4386392632C41008148 @default.
- W4386392632 hasConceptScore W4386392632C46686674 @default.
- W4386392632 hasConceptScore W4386392632C50644808 @default.
- W4386392632 hasConceptScore W4386392632C70153297 @default.
- W4386392632 hasConceptScore W4386392632C85617194 @default.
- W4386392632 hasConceptScore W4386392632C8642999 @default.
- W4386392632 hasFunder F4320335777 @default.
- W4386392632 hasLocation W43863926321 @default.
- W4386392632 hasOpenAccess W4386392632 @default.
- W4386392632 hasPrimaryLocation W43863926321 @default.
- W4386392632 hasRelatedWork W1996541855 @default.
- W4386392632 hasRelatedWork W2843469511 @default.
- W4386392632 hasRelatedWork W3162861012 @default.
- W4386392632 hasRelatedWork W3185921400 @default.
- W4386392632 hasRelatedWork W3210229324 @default.
- W4386392632 hasRelatedWork W4200409524 @default.
- W4386392632 hasRelatedWork W4210794429 @default.
- W4386392632 hasRelatedWork W4316076997 @default.
- W4386392632 hasRelatedWork W4322775603 @default.
- W4386392632 hasRelatedWork W4381786038 @default.
- W4386392632 isParatext "false" @default.
- W4386392632 isRetracted "false" @default.
- W4386392632 workType "article" @default.