Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386397948> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4386397948 endingPage "106902" @default.
- W4386397948 startingPage "106902" @default.
- W4386397948 abstract "Lung cancer (LC) remains a leading cause of death worldwide. Early diagnosis is critical to protect innocent human lives. Computed tomography (CT) scans are one of the primary imaging modalities for lung cancer diagnosis. However, manual CT scan analysis is time-consuming and prone to errors/not accurate. Considering these shortcomings, computational methods especially machine learning and deep learning algorithms are leveraged as an alternative to accelerate the accurate detection of CT scans as cancerous, and non-cancerous. In the present article, we proposed a novel transfer learning-based predictor called, Lung-EffNet for lung cancer classification. Lung-EffNet is built based on the architecture of EfficientNet and further modified by adding top layers in the classification head of the model. Lung-EffNet is evaluated by utilizing five variants of EfficientNet i.e., B0–B4. The experiments are conducted on the benchmark dataset “IQ-OTH/NCCD” for lung cancer patients grouped as benign, malignant, or normal based on the presence or absence of lung cancer. The class imbalance issue was handled through multiple data augmentation methods to overcome the biases. The developed model Lung-EffNet attained 99.10% of accuracy and a score of 0.97 to 0.99 of ROC on the test set. We compared the efficacy of the proposed fine-tuned pre-trained EfficientNet with other pre-trained CNN architectures. The predicted outcomes demonstrate that EfficientNetB1 based Lung-EffNet outperforms other CNNs in terms of both accuracy and efficiency. Moreover, it is faster and requires fewer parameters to train than other CNN based models, making it a good choice for large-scale deployment in clinical settings and a promising tool for automated lung cancer diagnosis from CT scan images." @default.
- W4386397948 created "2023-09-03" @default.
- W4386397948 creator A5009823080 @default.
- W4386397948 creator A5034110482 @default.
- W4386397948 creator A5045362793 @default.
- W4386397948 creator A5062530460 @default.
- W4386397948 creator A5068426908 @default.
- W4386397948 creator A5073854686 @default.
- W4386397948 creator A5084575160 @default.
- W4386397948 date "2023-11-01" @default.
- W4386397948 modified "2023-09-30" @default.
- W4386397948 title "Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images" @default.
- W4386397948 cites W2311857205 @default.
- W4386397948 cites W2773960327 @default.
- W4386397948 cites W2808601429 @default.
- W4386397948 cites W2914411673 @default.
- W4386397948 cites W2940735435 @default.
- W4386397948 cites W2985286907 @default.
- W4386397948 cites W3110317366 @default.
- W4386397948 cites W3127298451 @default.
- W4386397948 cites W3158677053 @default.
- W4386397948 cites W3161193295 @default.
- W4386397948 cites W3181644688 @default.
- W4386397948 cites W3189960127 @default.
- W4386397948 cites W3217412913 @default.
- W4386397948 cites W4200205682 @default.
- W4386397948 cites W4200326299 @default.
- W4386397948 cites W4211118443 @default.
- W4386397948 cites W4226320882 @default.
- W4386397948 cites W4246112108 @default.
- W4386397948 cites W4281743937 @default.
- W4386397948 cites W4311860868 @default.
- W4386397948 cites W4318670004 @default.
- W4386397948 cites W4361299606 @default.
- W4386397948 doi "https://doi.org/10.1016/j.engappai.2023.106902" @default.
- W4386397948 hasPublicationYear "2023" @default.
- W4386397948 type Work @default.
- W4386397948 citedByCount "0" @default.
- W4386397948 crossrefType "journal-article" @default.
- W4386397948 hasAuthorship W4386397948A5009823080 @default.
- W4386397948 hasAuthorship W4386397948A5034110482 @default.
- W4386397948 hasAuthorship W4386397948A5045362793 @default.
- W4386397948 hasAuthorship W4386397948A5062530460 @default.
- W4386397948 hasAuthorship W4386397948A5068426908 @default.
- W4386397948 hasAuthorship W4386397948A5073854686 @default.
- W4386397948 hasAuthorship W4386397948A5084575160 @default.
- W4386397948 hasBestOaLocation W43863979481 @default.
- W4386397948 hasConcept C119857082 @default.
- W4386397948 hasConcept C126322002 @default.
- W4386397948 hasConcept C126838900 @default.
- W4386397948 hasConcept C13280743 @default.
- W4386397948 hasConcept C142724271 @default.
- W4386397948 hasConcept C150899416 @default.
- W4386397948 hasConcept C153180895 @default.
- W4386397948 hasConcept C154945302 @default.
- W4386397948 hasConcept C185798385 @default.
- W4386397948 hasConcept C205649164 @default.
- W4386397948 hasConcept C2776256026 @default.
- W4386397948 hasConcept C2777405583 @default.
- W4386397948 hasConcept C2777714996 @default.
- W4386397948 hasConcept C41008148 @default.
- W4386397948 hasConcept C544519230 @default.
- W4386397948 hasConcept C71924100 @default.
- W4386397948 hasConceptScore W4386397948C119857082 @default.
- W4386397948 hasConceptScore W4386397948C126322002 @default.
- W4386397948 hasConceptScore W4386397948C126838900 @default.
- W4386397948 hasConceptScore W4386397948C13280743 @default.
- W4386397948 hasConceptScore W4386397948C142724271 @default.
- W4386397948 hasConceptScore W4386397948C150899416 @default.
- W4386397948 hasConceptScore W4386397948C153180895 @default.
- W4386397948 hasConceptScore W4386397948C154945302 @default.
- W4386397948 hasConceptScore W4386397948C185798385 @default.
- W4386397948 hasConceptScore W4386397948C205649164 @default.
- W4386397948 hasConceptScore W4386397948C2776256026 @default.
- W4386397948 hasConceptScore W4386397948C2777405583 @default.
- W4386397948 hasConceptScore W4386397948C2777714996 @default.
- W4386397948 hasConceptScore W4386397948C41008148 @default.
- W4386397948 hasConceptScore W4386397948C544519230 @default.
- W4386397948 hasConceptScore W4386397948C71924100 @default.
- W4386397948 hasFunder F4320332753 @default.
- W4386397948 hasFunder F4320334468 @default.
- W4386397948 hasLocation W43863979481 @default.
- W4386397948 hasOpenAccess W4386397948 @default.
- W4386397948 hasPrimaryLocation W43863979481 @default.
- W4386397948 hasRelatedWork W2121203541 @default.
- W4386397948 hasRelatedWork W2343652506 @default.
- W4386397948 hasRelatedWork W2561138184 @default.
- W4386397948 hasRelatedWork W2790522458 @default.
- W4386397948 hasRelatedWork W3080317927 @default.
- W4386397948 hasRelatedWork W3080750719 @default.
- W4386397948 hasRelatedWork W4288040045 @default.
- W4386397948 hasRelatedWork W4308262314 @default.
- W4386397948 hasRelatedWork W4311333740 @default.
- W4386397948 hasRelatedWork W4382286161 @default.
- W4386397948 hasVolume "126" @default.
- W4386397948 isParatext "false" @default.
- W4386397948 isRetracted "false" @default.
- W4386397948 workType "article" @default.