Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386400627> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4386400627 endingPage "113402" @default.
- W4386400627 startingPage "113402" @default.
- W4386400627 abstract "Machine condition monitoring methods are a powerful tool for the physical condition evaluation of high-end equipment. As one of the main manufacturing applications of machine condition monitoring, tool performance evaluation (TPE) suffers the limitation of model generalization ability across multiple operating conditions. Subsequently, designing a method that can meet the diversified industrial scenarios’ requirements to confirm the cutters’ machinability is of great practical significance. However, recent TPE studies indicate that the on-machine measurement processes are predominantly affected by the interference of ambient noise and signal aliasing of multi-source sensors. Recent advances in knowledge-embedding and artificial intelligence bring new vitality to the development of industrial condition-based maintenance applications. Considering the above-mentioned analysis, this paper proposes a new knowledge-embedded intelligent TPE method, where the prior knowledge of machining parameters is fused with features extracted from multiple sensor information. The proposed method gives an effective solution for TPE tasks under multiple working conditions." @default.
- W4386400627 created "2023-09-04" @default.
- W4386400627 creator A5013302911 @default.
- W4386400627 creator A5028432371 @default.
- W4386400627 creator A5074695926 @default.
- W4386400627 date "2023-11-01" @default.
- W4386400627 modified "2023-09-28" @default.
- W4386400627 title "Knowledge Embedded Lightweight Vision Transformer for Machine Condition Monitoring" @default.
- W4386400627 cites W2118735559 @default.
- W4386400627 cites W2187541352 @default.
- W4386400627 cites W2519051404 @default.
- W4386400627 cites W2910597635 @default.
- W4386400627 cites W2983210627 @default.
- W4386400627 cites W3017961231 @default.
- W4386400627 cites W3041632065 @default.
- W4386400627 cites W3048342131 @default.
- W4386400627 cites W3093010392 @default.
- W4386400627 cites W3096365635 @default.
- W4386400627 cites W3107704013 @default.
- W4386400627 cites W3141557030 @default.
- W4386400627 cites W3155835896 @default.
- W4386400627 cites W3207770237 @default.
- W4386400627 cites W3216280806 @default.
- W4386400627 cites W4207030936 @default.
- W4386400627 cites W4220780033 @default.
- W4386400627 cites W4220860010 @default.
- W4386400627 cites W4221133782 @default.
- W4386400627 cites W4224273747 @default.
- W4386400627 cites W4281785493 @default.
- W4386400627 cites W4283386603 @default.
- W4386400627 cites W4285900042 @default.
- W4386400627 cites W4289224222 @default.
- W4386400627 cites W4297510522 @default.
- W4386400627 cites W4307931838 @default.
- W4386400627 cites W4309768776 @default.
- W4386400627 cites W4309889646 @default.
- W4386400627 cites W4312975111 @default.
- W4386400627 cites W4313188544 @default.
- W4386400627 cites W4313200700 @default.
- W4386400627 cites W4313595851 @default.
- W4386400627 cites W4318562158 @default.
- W4386400627 cites W4319071870 @default.
- W4386400627 cites W4322618960 @default.
- W4386400627 cites W4323974907 @default.
- W4386400627 cites W4366278346 @default.
- W4386400627 cites W4367318958 @default.
- W4386400627 cites W4384070636 @default.
- W4386400627 doi "https://doi.org/10.1016/j.measurement.2023.113402" @default.
- W4386400627 hasPublicationYear "2023" @default.
- W4386400627 type Work @default.
- W4386400627 citedByCount "0" @default.
- W4386400627 crossrefType "journal-article" @default.
- W4386400627 hasAuthorship W4386400627A5013302911 @default.
- W4386400627 hasAuthorship W4386400627A5028432371 @default.
- W4386400627 hasAuthorship W4386400627A5074695926 @default.
- W4386400627 hasConcept C119599485 @default.
- W4386400627 hasConcept C119857082 @default.
- W4386400627 hasConcept C127413603 @default.
- W4386400627 hasConcept C154945302 @default.
- W4386400627 hasConcept C165801399 @default.
- W4386400627 hasConcept C2775846686 @default.
- W4386400627 hasConcept C2775926494 @default.
- W4386400627 hasConcept C41008148 @default.
- W4386400627 hasConcept C523214423 @default.
- W4386400627 hasConcept C5941749 @default.
- W4386400627 hasConcept C66322947 @default.
- W4386400627 hasConcept C78519656 @default.
- W4386400627 hasConceptScore W4386400627C119599485 @default.
- W4386400627 hasConceptScore W4386400627C119857082 @default.
- W4386400627 hasConceptScore W4386400627C127413603 @default.
- W4386400627 hasConceptScore W4386400627C154945302 @default.
- W4386400627 hasConceptScore W4386400627C165801399 @default.
- W4386400627 hasConceptScore W4386400627C2775846686 @default.
- W4386400627 hasConceptScore W4386400627C2775926494 @default.
- W4386400627 hasConceptScore W4386400627C41008148 @default.
- W4386400627 hasConceptScore W4386400627C523214423 @default.
- W4386400627 hasConceptScore W4386400627C5941749 @default.
- W4386400627 hasConceptScore W4386400627C66322947 @default.
- W4386400627 hasConceptScore W4386400627C78519656 @default.
- W4386400627 hasLocation W43864006271 @default.
- W4386400627 hasOpenAccess W4386400627 @default.
- W4386400627 hasPrimaryLocation W43864006271 @default.
- W4386400627 hasRelatedWork W1931451966 @default.
- W4386400627 hasRelatedWork W2061188223 @default.
- W4386400627 hasRelatedWork W2370947898 @default.
- W4386400627 hasRelatedWork W2392912804 @default.
- W4386400627 hasRelatedWork W2754066828 @default.
- W4386400627 hasRelatedWork W2802252155 @default.
- W4386400627 hasRelatedWork W3084314591 @default.
- W4386400627 hasRelatedWork W4293793777 @default.
- W4386400627 hasRelatedWork W4379523756 @default.
- W4386400627 hasRelatedWork W848958713 @default.
- W4386400627 hasVolume "221" @default.
- W4386400627 isParatext "false" @default.
- W4386400627 isRetracted "false" @default.
- W4386400627 workType "article" @default.