Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386400984> ?p ?o ?g. }
- W4386400984 abstract "Abstract Background Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) could aid the diagnosis of acute respiratory infections (ARI) owing to its affordability and high-throughput capacity. MALDI-MS has been proposed for use on commonly available respiratory samples, without specialized sample preparation, making this technology especially attractive for implementation in low-resource regions. Here, we assessed the utility of MALDI-MS in differentiating SARS-CoV-2 versus non-COVID acute respiratory infections (NCARI) in a clinical lab setting of Kazakhstan. Methods Nasopharyngeal swabs were collected from in- and outpatients with respiratory symptoms and from asymptomatic controls (AC) in 2020-2022. PCR was used to differentiate SARS-CoV-2+ and NCARI cases. MALDI-MS spectra were obtained for a total of 252 samples (115 SARS-CoV-2+, 98 NCARI and 39 AC) without specialized sample preparation. In our first sub-analysis, we followed a published protocol for peak preprocessing and Machine Learning (ML), trained on publicly available spectra from South American SARS-CoV-2+ and NCARI samples. In our second sub-analysis, we trained ML models on a peak intensity matrix representative of both South American (SA) and Kazakhstan (Kaz) samples. Results Applying the established MALDI-MS pipeline ”as is” resulted in a high detection rate for SARS-CoV-2+ samples (91.0%), but low accuracy for NCARI (48.0%) and AC (67.0%) by the top-performing random forest model. After re-training of the ML algorithms on the SA-Kaz peak intensity matrix, the accuracy of detection by the top-performing Support Vector Machine with radial basis function kernel model was at 88.0, 95.0 and 78% for the Kazakhstan SARS-CoV-2+, NCARI, and AC subjects, respectively with a SARS-CoV-2 vs. rest ROC AUC of 0.983 [0.958, 0.987]; a high differentiation accuracy was maintained for the South American SARS-CoV-2 and NCARI. Conclusions MALDI-MS/ML is a feasible approach for the differentiation of ARI without a specialized sample preparation. The implementation of MALDI-MS/ML in a real clinical lab setting will necessitate continuous optimization to keep up with the rapidly evolving landscape of ARI." @default.
- W4386400984 created "2023-09-04" @default.
- W4386400984 creator A5004048006 @default.
- W4386400984 creator A5004918938 @default.
- W4386400984 creator A5006380346 @default.
- W4386400984 creator A5007198575 @default.
- W4386400984 creator A5011072644 @default.
- W4386400984 creator A5011451693 @default.
- W4386400984 creator A5012293027 @default.
- W4386400984 creator A5012361177 @default.
- W4386400984 creator A5025046247 @default.
- W4386400984 creator A5025618316 @default.
- W4386400984 creator A5032963413 @default.
- W4386400984 creator A5046766206 @default.
- W4386400984 creator A5053858864 @default.
- W4386400984 creator A5058878849 @default.
- W4386400984 creator A5066625736 @default.
- W4386400984 creator A5085292560 @default.
- W4386400984 creator A5086039635 @default.
- W4386400984 creator A5092735352 @default.
- W4386400984 date "2023-09-02" @default.
- W4386400984 modified "2023-10-16" @default.
- W4386400984 title "Application of MALDI-MS and Machine Learning to Detection of SARS-CoV-2 and non-SARS-CoV-2 Respiratory Infections." @default.
- W4386400984 cites W2147214095 @default.
- W4386400984 cites W3046742184 @default.
- W4386400984 cites W3088611516 @default.
- W4386400984 cites W3149247640 @default.
- W4386400984 cites W3154722887 @default.
- W4386400984 cites W3156033954 @default.
- W4386400984 cites W3181429454 @default.
- W4386400984 cites W3210258259 @default.
- W4386400984 cites W4324066775 @default.
- W4386400984 cites W4386053907 @default.
- W4386400984 doi "https://doi.org/10.1101/2023.08.31.23294891" @default.
- W4386400984 hasPublicationYear "2023" @default.
- W4386400984 type Work @default.
- W4386400984 citedByCount "0" @default.
- W4386400984 crossrefType "posted-content" @default.
- W4386400984 hasAuthorship W4386400984A5004048006 @default.
- W4386400984 hasAuthorship W4386400984A5004918938 @default.
- W4386400984 hasAuthorship W4386400984A5006380346 @default.
- W4386400984 hasAuthorship W4386400984A5007198575 @default.
- W4386400984 hasAuthorship W4386400984A5011072644 @default.
- W4386400984 hasAuthorship W4386400984A5011451693 @default.
- W4386400984 hasAuthorship W4386400984A5012293027 @default.
- W4386400984 hasAuthorship W4386400984A5012361177 @default.
- W4386400984 hasAuthorship W4386400984A5025046247 @default.
- W4386400984 hasAuthorship W4386400984A5025618316 @default.
- W4386400984 hasAuthorship W4386400984A5032963413 @default.
- W4386400984 hasAuthorship W4386400984A5046766206 @default.
- W4386400984 hasAuthorship W4386400984A5053858864 @default.
- W4386400984 hasAuthorship W4386400984A5058878849 @default.
- W4386400984 hasAuthorship W4386400984A5066625736 @default.
- W4386400984 hasAuthorship W4386400984A5085292560 @default.
- W4386400984 hasAuthorship W4386400984A5086039635 @default.
- W4386400984 hasAuthorship W4386400984A5092735352 @default.
- W4386400984 hasBestOaLocation W43864009841 @default.
- W4386400984 hasConcept C126322002 @default.
- W4386400984 hasConcept C150394285 @default.
- W4386400984 hasConcept C154945302 @default.
- W4386400984 hasConcept C162356407 @default.
- W4386400984 hasConcept C162711632 @default.
- W4386400984 hasConcept C178790620 @default.
- W4386400984 hasConcept C185592680 @default.
- W4386400984 hasConcept C2777910003 @default.
- W4386400984 hasConcept C2779134260 @default.
- W4386400984 hasConcept C3007834351 @default.
- W4386400984 hasConcept C3008058167 @default.
- W4386400984 hasConcept C34736171 @default.
- W4386400984 hasConcept C41008148 @default.
- W4386400984 hasConcept C43617362 @default.
- W4386400984 hasConcept C524204448 @default.
- W4386400984 hasConcept C534529494 @default.
- W4386400984 hasConcept C71924100 @default.
- W4386400984 hasConcept C75280812 @default.
- W4386400984 hasConceptScore W4386400984C126322002 @default.
- W4386400984 hasConceptScore W4386400984C150394285 @default.
- W4386400984 hasConceptScore W4386400984C154945302 @default.
- W4386400984 hasConceptScore W4386400984C162356407 @default.
- W4386400984 hasConceptScore W4386400984C162711632 @default.
- W4386400984 hasConceptScore W4386400984C178790620 @default.
- W4386400984 hasConceptScore W4386400984C185592680 @default.
- W4386400984 hasConceptScore W4386400984C2777910003 @default.
- W4386400984 hasConceptScore W4386400984C2779134260 @default.
- W4386400984 hasConceptScore W4386400984C3007834351 @default.
- W4386400984 hasConceptScore W4386400984C3008058167 @default.
- W4386400984 hasConceptScore W4386400984C34736171 @default.
- W4386400984 hasConceptScore W4386400984C41008148 @default.
- W4386400984 hasConceptScore W4386400984C43617362 @default.
- W4386400984 hasConceptScore W4386400984C524204448 @default.
- W4386400984 hasConceptScore W4386400984C534529494 @default.
- W4386400984 hasConceptScore W4386400984C71924100 @default.
- W4386400984 hasConceptScore W4386400984C75280812 @default.
- W4386400984 hasLocation W43864009841 @default.
- W4386400984 hasOpenAccess W4386400984 @default.
- W4386400984 hasPrimaryLocation W43864009841 @default.
- W4386400984 hasRelatedWork W1987215768 @default.
- W4386400984 hasRelatedWork W1991129960 @default.
- W4386400984 hasRelatedWork W1995188757 @default.
- W4386400984 hasRelatedWork W2016679923 @default.