Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386409723> ?p ?o ?g. }
- W4386409723 endingPage "121490" @default.
- W4386409723 startingPage "121490" @default.
- W4386409723 abstract "Thermal management plays a vital role in the widespread adoption of electric vehicles, and heat pipes are increasingly being recognized as passive cooling solutions for battery thermal management. To address the issue of poor temperature uniformity at the battery contact surface in the side cooling application of battery thermal management systems (BTMS), the use of a flat confined loop heat pipe (FCLHP) as a solution for side cooling in battery thermal management has been proposed. A numerical simulation model was developed, employing the volume of fluid (VOF) method combined with the Lee phase-change model, to investigate the effects of heating power and filling ratio on the heat transfer characteristics of FCLHP and observe the flow behavior inside the pipes. The results showed that, under steady-state conditions, the FCLHP exhibited an annular flow pattern in the condenser and a large bubble boiling regime in the evaporator, effectively mitigating the “dry-out” phenomenon observed in traditional microchannel heat pipes. With an increase in heating power from 30W to 50W and 70W, the overall thermal resistance decreased by 44.39% and 61.08% respectively, with a diminishing reduction in total thermal resistance as the heating power increased. Furthermore, increasing the filling ratio from 50% to 70% and 90% resulted in a reduction of overall thermal resistance by 47% and 40.93% respectively. It was observed that the thermal resistance of FCLHP decreased with increasing heating power, while with increasing filling ratio, the thermal resistance initially decreased and then increased, reaching an optimal filling ratio of 70%. A comparative model with a traditional microchannel heat pipe was established to assess battery contact surface temperature and temperature uniformity. FCLHP exhibited lower battery contact surface temperature compared to traditional microchannel heat pipes, with a 33% improvement in temperature uniformity. This work highlights the potential of unidirectional confined loop heat pipes in side cooling applications for batteries and provides a new design concept and theoretical foundation for the application of loop heat pipes in battery cooling." @default.
- W4386409723 created "2023-09-05" @default.
- W4386409723 creator A5035801000 @default.
- W4386409723 creator A5037451780 @default.
- W4386409723 creator A5042466812 @default.
- W4386409723 creator A5044792231 @default.
- W4386409723 creator A5050249464 @default.
- W4386409723 creator A5063885988 @default.
- W4386409723 creator A5071723383 @default.
- W4386409723 creator A5084439329 @default.
- W4386409723 date "2024-01-01" @default.
- W4386409723 modified "2023-10-01" @default.
- W4386409723 title "Numerical study on side cooling technology of battery with a flat confined loop heat pipe" @default.
- W4386409723 cites W2002402153 @default.
- W4386409723 cites W2023248330 @default.
- W4386409723 cites W2032110671 @default.
- W4386409723 cites W2032912847 @default.
- W4386409723 cites W2044982395 @default.
- W4386409723 cites W2054133200 @default.
- W4386409723 cites W2060095104 @default.
- W4386409723 cites W2080922987 @default.
- W4386409723 cites W2116064024 @default.
- W4386409723 cites W2278188655 @default.
- W4386409723 cites W2507062255 @default.
- W4386409723 cites W2765264731 @default.
- W4386409723 cites W2782077305 @default.
- W4386409723 cites W2884594211 @default.
- W4386409723 cites W2913189776 @default.
- W4386409723 cites W2979205018 @default.
- W4386409723 cites W299977395 @default.
- W4386409723 cites W3023321784 @default.
- W4386409723 cites W3108004820 @default.
- W4386409723 cites W3136422092 @default.
- W4386409723 cites W3154168106 @default.
- W4386409723 cites W3163209513 @default.
- W4386409723 cites W3174629884 @default.
- W4386409723 cites W4220997536 @default.
- W4386409723 cites W4280638594 @default.
- W4386409723 cites W4283315833 @default.
- W4386409723 cites W4283451632 @default.
- W4386409723 cites W4286255953 @default.
- W4386409723 cites W4293577561 @default.
- W4386409723 cites W4296124841 @default.
- W4386409723 cites W4310493824 @default.
- W4386409723 cites W4317380430 @default.
- W4386409723 doi "https://doi.org/10.1016/j.applthermaleng.2023.121490" @default.
- W4386409723 hasPublicationYear "2024" @default.
- W4386409723 type Work @default.
- W4386409723 citedByCount "0" @default.
- W4386409723 crossrefType "journal-article" @default.
- W4386409723 hasAuthorship W4386409723A5035801000 @default.
- W4386409723 hasAuthorship W4386409723A5037451780 @default.
- W4386409723 hasAuthorship W4386409723A5042466812 @default.
- W4386409723 hasAuthorship W4386409723A5044792231 @default.
- W4386409723 hasAuthorship W4386409723A5050249464 @default.
- W4386409723 hasAuthorship W4386409723A5063885988 @default.
- W4386409723 hasAuthorship W4386409723A5071723383 @default.
- W4386409723 hasAuthorship W4386409723A5084439329 @default.
- W4386409723 hasConcept C107706546 @default.
- W4386409723 hasConcept C116915560 @default.
- W4386409723 hasConcept C120665830 @default.
- W4386409723 hasConcept C121332964 @default.
- W4386409723 hasConcept C127413603 @default.
- W4386409723 hasConcept C137693562 @default.
- W4386409723 hasConcept C159985019 @default.
- W4386409723 hasConcept C163258240 @default.
- W4386409723 hasConcept C192562407 @default.
- W4386409723 hasConcept C204530211 @default.
- W4386409723 hasConcept C2780934509 @default.
- W4386409723 hasConcept C2982854487 @default.
- W4386409723 hasConcept C37728375 @default.
- W4386409723 hasConcept C50517652 @default.
- W4386409723 hasConcept C555008776 @default.
- W4386409723 hasConcept C57879066 @default.
- W4386409723 hasConcept C78519656 @default.
- W4386409723 hasConcept C91311341 @default.
- W4386409723 hasConcept C97355855 @default.
- W4386409723 hasConceptScore W4386409723C107706546 @default.
- W4386409723 hasConceptScore W4386409723C116915560 @default.
- W4386409723 hasConceptScore W4386409723C120665830 @default.
- W4386409723 hasConceptScore W4386409723C121332964 @default.
- W4386409723 hasConceptScore W4386409723C127413603 @default.
- W4386409723 hasConceptScore W4386409723C137693562 @default.
- W4386409723 hasConceptScore W4386409723C159985019 @default.
- W4386409723 hasConceptScore W4386409723C163258240 @default.
- W4386409723 hasConceptScore W4386409723C192562407 @default.
- W4386409723 hasConceptScore W4386409723C204530211 @default.
- W4386409723 hasConceptScore W4386409723C2780934509 @default.
- W4386409723 hasConceptScore W4386409723C2982854487 @default.
- W4386409723 hasConceptScore W4386409723C37728375 @default.
- W4386409723 hasConceptScore W4386409723C50517652 @default.
- W4386409723 hasConceptScore W4386409723C555008776 @default.
- W4386409723 hasConceptScore W4386409723C57879066 @default.
- W4386409723 hasConceptScore W4386409723C78519656 @default.
- W4386409723 hasConceptScore W4386409723C91311341 @default.
- W4386409723 hasConceptScore W4386409723C97355855 @default.
- W4386409723 hasFunder F4320320300 @default.
- W4386409723 hasFunder F4320324202 @default.