Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386410150> ?p ?o ?g. }
- W4386410150 endingPage "143148" @default.
- W4386410150 startingPage "143148" @default.
- W4386410150 abstract "Rechargeable metal ion batteries (MIBs) are of paramount significance for electrochemical energy storage, utilization, and transportation in modern civilization. Various electrode materials have been explored to improve the voltage of battery. However, the role of metal-solvent interaction energies in voltage determination is yet to be explored in MIBs. Here, we have considered a large number of metal-solvent combinations to predict the interaction energy using the machine learning (ML) techniques followed by anode half-cell voltage calculation. A total of 1584 metal-solvent systems consisting of six metals (Li, Na, Mg, Al, K, Ca) and 66 solvents have been considered for this work. The gradient boosting regression (GBR) has been found to be the best-fitted ML model for the prediction of interaction energy. Further, with increasing the solvent number around the metal centre, the effect of voltage changes has been investigated systematically. Moreover, an interpretable ML algorithm (shapash) has been implemented for local and global feature analysis. Our results establish the relation between metal solvent interaction energy and voltage and also offers suitable solvents for different MIBs. It further establishes ML techniques as promising alternative for computationally demanding calculations as first screening tools for energy storage devices." @default.
- W4386410150 created "2023-09-05" @default.
- W4386410150 creator A5010117020 @default.
- W4386410150 creator A5013189148 @default.
- W4386410150 creator A5018218171 @default.
- W4386410150 date "2023-11-01" @default.
- W4386410150 modified "2023-10-17" @default.
- W4386410150 title "Metal-Solvent Interaction Contribution on Voltage for Metal Ion Battery: An Interpretable Machine Learning Approach" @default.
- W4386410150 cites W1971275758 @default.
- W4386410150 cites W2011254772 @default.
- W4386410150 cites W2046412723 @default.
- W4386410150 cites W2061084956 @default.
- W4386410150 cites W2065077785 @default.
- W4386410150 cites W2089525884 @default.
- W4386410150 cites W2092157292 @default.
- W4386410150 cites W2094642658 @default.
- W4386410150 cites W2159915276 @default.
- W4386410150 cites W2274280180 @default.
- W4386410150 cites W2299899083 @default.
- W4386410150 cites W2337110853 @default.
- W4386410150 cites W2347129741 @default.
- W4386410150 cites W2409569496 @default.
- W4386410150 cites W2471982001 @default.
- W4386410150 cites W2507380695 @default.
- W4386410150 cites W2509907061 @default.
- W4386410150 cites W2565212977 @default.
- W4386410150 cites W2606575273 @default.
- W4386410150 cites W2726324470 @default.
- W4386410150 cites W2753749122 @default.
- W4386410150 cites W2806681928 @default.
- W4386410150 cites W2830440988 @default.
- W4386410150 cites W2884430236 @default.
- W4386410150 cites W2902441058 @default.
- W4386410150 cites W2903262661 @default.
- W4386410150 cites W2949095042 @default.
- W4386410150 cites W2951009204 @default.
- W4386410150 cites W2953641512 @default.
- W4386410150 cites W2968923792 @default.
- W4386410150 cites W2984055922 @default.
- W4386410150 cites W2994097301 @default.
- W4386410150 cites W3003769243 @default.
- W4386410150 cites W3006857012 @default.
- W4386410150 cites W3012230641 @default.
- W4386410150 cites W3023001541 @default.
- W4386410150 cites W3033632671 @default.
- W4386410150 cites W3104792026 @default.
- W4386410150 cites W3150414869 @default.
- W4386410150 cites W3160189453 @default.
- W4386410150 cites W3169483440 @default.
- W4386410150 cites W3174915769 @default.
- W4386410150 cites W3200695454 @default.
- W4386410150 cites W3207468551 @default.
- W4386410150 cites W3212360274 @default.
- W4386410150 cites W4205941116 @default.
- W4386410150 cites W4210433884 @default.
- W4386410150 cites W4213216604 @default.
- W4386410150 cites W4221152141 @default.
- W4386410150 cites W4226155346 @default.
- W4386410150 cites W4282829869 @default.
- W4386410150 cites W4282942408 @default.
- W4386410150 cites W4283524579 @default.
- W4386410150 cites W4289886030 @default.
- W4386410150 cites W4290804425 @default.
- W4386410150 doi "https://doi.org/10.1016/j.electacta.2023.143148" @default.
- W4386410150 hasPublicationYear "2023" @default.
- W4386410150 type Work @default.
- W4386410150 citedByCount "0" @default.
- W4386410150 crossrefType "journal-article" @default.
- W4386410150 hasAuthorship W4386410150A5010117020 @default.
- W4386410150 hasAuthorship W4386410150A5013189148 @default.
- W4386410150 hasAuthorship W4386410150A5018218171 @default.
- W4386410150 hasConcept C119599485 @default.
- W4386410150 hasConcept C121332964 @default.
- W4386410150 hasConcept C127413603 @default.
- W4386410150 hasConcept C147789679 @default.
- W4386410150 hasConcept C163258240 @default.
- W4386410150 hasConcept C165801399 @default.
- W4386410150 hasConcept C171250308 @default.
- W4386410150 hasConcept C17525397 @default.
- W4386410150 hasConcept C178790620 @default.
- W4386410150 hasConcept C185592680 @default.
- W4386410150 hasConcept C192562407 @default.
- W4386410150 hasConcept C199164860 @default.
- W4386410150 hasConcept C22499117 @default.
- W4386410150 hasConcept C2780471494 @default.
- W4386410150 hasConcept C32909587 @default.
- W4386410150 hasConcept C41008148 @default.
- W4386410150 hasConcept C52859227 @default.
- W4386410150 hasConcept C544153396 @default.
- W4386410150 hasConcept C555008776 @default.
- W4386410150 hasConcept C73916439 @default.
- W4386410150 hasConcept C89395315 @default.
- W4386410150 hasConcept C97355855 @default.
- W4386410150 hasConceptScore W4386410150C119599485 @default.
- W4386410150 hasConceptScore W4386410150C121332964 @default.
- W4386410150 hasConceptScore W4386410150C127413603 @default.
- W4386410150 hasConceptScore W4386410150C147789679 @default.
- W4386410150 hasConceptScore W4386410150C163258240 @default.