Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386411596> ?p ?o ?g. }
- W4386411596 endingPage "e49898" @default.
- W4386411596 startingPage "e49898" @default.
- W4386411596 abstract "Background Parkinson disease (PD) affects millions globally, causing motor function impairments. Early detection is vital, and diverse data sources aid diagnosis. We focus on lower arm movements during keyboard and trackpad or touchscreen interactions, which serve as reliable indicators of PD. Previous works explore keyboard tapping and unstructured device monitoring; we attempt to further these works with structured tests taking into account 2D hand movement in addition to finger tapping. Our feasibility study uses keystroke and mouse movement data from a remotely conducted, structured, web-based test combined with self-reported PD status to create a predictive model for detecting the presence of PD. Objective Analysis of finger tapping speed and accuracy through keyboard input and analysis of 2D hand movement through mouse input allowed differentiation between participants with and without PD. This comparative analysis enables us to establish clear distinctions between the two groups and explore the feasibility of using motor behavior to predict the presence of the disease. Methods Participants were recruited via email by the Hawaii Parkinson Association (HPA) and directed to a web application for the tests. The 2023 HPA symposium was also used as a forum to recruit participants and spread information about our study. The application recorded participant demographics, including age, gender, and race, as well as PD status. We conducted a series of tests to assess finger tapping, using on-screen prompts to request key presses of constant and random keys. Response times, accuracy, and unintended movements resulting in accidental presses were recorded. Participants performed a hand movement test consisting of tracing straight and curved on-screen ribbons using a trackpad or mouse, allowing us to evaluate stability and precision of 2D hand movement. From this tracing, the test collected and stored insights concerning lower arm motor movement. Results Our formative study included 31 participants, 18 without PD and 13 with PD, and analyzed their lower limb movement data collected from keyboards and computer mice. From the data set, we extracted 28 features and evaluated their significances using an extra tree classifier predictor. A random forest model was trained using the 6 most important features identified by the predictor. These selected features provided insights into precision and movement speed derived from keyboard tapping and mouse tracing tests. This final model achieved an average F1-score of 0.7311 (SD 0.1663) and an average accuracy of 0.7429 (SD 0.1400) over 20 runs for predicting the presence of PD. Conclusions This preliminary feasibility study suggests the possibility of using technology-based limb movement data to predict the presence of PD, demonstrating the practicality of implementing this approach in a cost-effective and accessible manner. In addition, this study demonstrates that structured mouse movement tests can be used in combination with finger tapping to detect PD." @default.
- W4386411596 created "2023-09-05" @default.
- W4386411596 creator A5037490912 @default.
- W4386411596 creator A5092213170 @default.
- W4386411596 creator A5092213171 @default.
- W4386411596 date "2023-09-29" @default.
- W4386411596 modified "2023-10-18" @default.
- W4386411596 title "Parkinson’s Disease Recognition using a Gamified Website: Machine Learning Feasibility Study (Preprint)" @default.
- W4386411596 cites W1492555660 @default.
- W4386411596 cites W1498383300 @default.
- W4386411596 cites W1507057336 @default.
- W4386411596 cites W1965874548 @default.
- W4386411596 cites W1972124861 @default.
- W4386411596 cites W1978793506 @default.
- W4386411596 cites W1995492873 @default.
- W4386411596 cites W2017755444 @default.
- W4386411596 cites W2025514142 @default.
- W4386411596 cites W2054163875 @default.
- W4386411596 cites W2063529501 @default.
- W4386411596 cites W2084337427 @default.
- W4386411596 cites W2085555115 @default.
- W4386411596 cites W2092440708 @default.
- W4386411596 cites W2095134828 @default.
- W4386411596 cites W2096019638 @default.
- W4386411596 cites W2096216065 @default.
- W4386411596 cites W2106821521 @default.
- W4386411596 cites W2573628155 @default.
- W4386411596 cites W2749718288 @default.
- W4386411596 cites W2773982115 @default.
- W4386411596 cites W2789836581 @default.
- W4386411596 cites W2789914560 @default.
- W4386411596 cites W2791600159 @default.
- W4386411596 cites W2807884992 @default.
- W4386411596 cites W2894440018 @default.
- W4386411596 cites W2900586747 @default.
- W4386411596 cites W2946410019 @default.
- W4386411596 cites W2995210729 @default.
- W4386411596 cites W2996606328 @default.
- W4386411596 cites W3000387168 @default.
- W4386411596 cites W3029947802 @default.
- W4386411596 cites W3112428400 @default.
- W4386411596 cites W3136582211 @default.
- W4386411596 cites W3156313310 @default.
- W4386411596 cites W3163119515 @default.
- W4386411596 cites W3189407326 @default.
- W4386411596 cites W4205387009 @default.
- W4386411596 cites W4205785225 @default.
- W4386411596 cites W4206481149 @default.
- W4386411596 cites W4212799943 @default.
- W4386411596 cites W4214941771 @default.
- W4386411596 cites W4220977371 @default.
- W4386411596 cites W4221062805 @default.
- W4386411596 cites W4221143050 @default.
- W4386411596 cites W4281929536 @default.
- W4386411596 cites W4289690809 @default.
- W4386411596 cites W4367836613 @default.
- W4386411596 cites W76115318 @default.
- W4386411596 doi "https://doi.org/10.2196/49898" @default.
- W4386411596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37773607" @default.
- W4386411596 hasPublicationYear "2023" @default.
- W4386411596 type Work @default.
- W4386411596 citedByCount "0" @default.
- W4386411596 crossrefType "journal-article" @default.
- W4386411596 hasAuthorship W4386411596A5037490912 @default.
- W4386411596 hasAuthorship W4386411596A5092213170 @default.
- W4386411596 hasAuthorship W4386411596A5092213171 @default.
- W4386411596 hasBestOaLocation W43864115961 @default.
- W4386411596 hasConcept C107457646 @default.
- W4386411596 hasConcept C127413603 @default.
- W4386411596 hasConcept C136764020 @default.
- W4386411596 hasConcept C142724271 @default.
- W4386411596 hasConcept C151730666 @default.
- W4386411596 hasConcept C15744967 @default.
- W4386411596 hasConcept C161615301 @default.
- W4386411596 hasConcept C2777267654 @default.
- W4386411596 hasConcept C2777644245 @default.
- W4386411596 hasConcept C2778539339 @default.
- W4386411596 hasConcept C2779134260 @default.
- W4386411596 hasConcept C2779734285 @default.
- W4386411596 hasConcept C2992114214 @default.
- W4386411596 hasConcept C38652104 @default.
- W4386411596 hasConcept C41008148 @default.
- W4386411596 hasConcept C43169469 @default.
- W4386411596 hasConcept C548259974 @default.
- W4386411596 hasConcept C71924100 @default.
- W4386411596 hasConcept C78519656 @default.
- W4386411596 hasConcept C86803240 @default.
- W4386411596 hasConcept C99508421 @default.
- W4386411596 hasConceptScore W4386411596C107457646 @default.
- W4386411596 hasConceptScore W4386411596C127413603 @default.
- W4386411596 hasConceptScore W4386411596C136764020 @default.
- W4386411596 hasConceptScore W4386411596C142724271 @default.
- W4386411596 hasConceptScore W4386411596C151730666 @default.
- W4386411596 hasConceptScore W4386411596C15744967 @default.
- W4386411596 hasConceptScore W4386411596C161615301 @default.
- W4386411596 hasConceptScore W4386411596C2777267654 @default.
- W4386411596 hasConceptScore W4386411596C2777644245 @default.
- W4386411596 hasConceptScore W4386411596C2778539339 @default.