Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386412258> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4386412258 endingPage "590" @default.
- W4386412258 startingPage "568" @default.
- W4386412258 abstract "Crime is hard to anticipate since it occurs at random and can occur anywhere at any moment, making it a difficult issue for any society to address. By analyzing and comparing eight known prediction models: Naive Bayes, Stacking, Random Forest, Lazy:IBK, Bagging, Support Vector Machine, Convolutional Neural Network, and Locally Weighted Learning – this study proposed an improved deep learning crime prediction model using convolutional neural networks and the xgboost algorithm to predict crime. The major goal of this research is to provide an improved crime prediction model based on previous criminal records. Using the Boston crime dataset, where our larceny crime dataset was extracted, exploratory data analysis (EDA) is used to uncover patterns and explain trends in crimes. The performance of the proposed model on the basis of accuracy, recall, and f-measure was 100% outperforming the other models used in this study. The analysis of the proposed model and prediction can aid security services in making better use of their resources, anticipating crime at a certain time, and serving the society better." @default.
- W4386412258 created "2023-09-05" @default.
- W4386412258 creator A5039839933 @default.
- W4386412258 creator A5092309330 @default.
- W4386412258 date "2023-01-01" @default.
- W4386412258 modified "2023-09-27" @default.
- W4386412258 title "Model for Spatiotemporal Crime Prediction with Improved Deep Learning" @default.
- W4386412258 doi "https://doi.org/10.31577/cai_2023_3_568" @default.
- W4386412258 hasPublicationYear "2023" @default.
- W4386412258 type Work @default.
- W4386412258 citedByCount "0" @default.
- W4386412258 crossrefType "journal-article" @default.
- W4386412258 hasAuthorship W4386412258A5039839933 @default.
- W4386412258 hasAuthorship W4386412258A5092309330 @default.
- W4386412258 hasBestOaLocation W43864122581 @default.
- W4386412258 hasConcept C119857082 @default.
- W4386412258 hasConcept C12267149 @default.
- W4386412258 hasConcept C124101348 @default.
- W4386412258 hasConcept C154945302 @default.
- W4386412258 hasConcept C169258074 @default.
- W4386412258 hasConcept C41008148 @default.
- W4386412258 hasConcept C52001869 @default.
- W4386412258 hasConcept C81363708 @default.
- W4386412258 hasConceptScore W4386412258C119857082 @default.
- W4386412258 hasConceptScore W4386412258C12267149 @default.
- W4386412258 hasConceptScore W4386412258C124101348 @default.
- W4386412258 hasConceptScore W4386412258C154945302 @default.
- W4386412258 hasConceptScore W4386412258C169258074 @default.
- W4386412258 hasConceptScore W4386412258C41008148 @default.
- W4386412258 hasConceptScore W4386412258C52001869 @default.
- W4386412258 hasConceptScore W4386412258C81363708 @default.
- W4386412258 hasIssue "3" @default.
- W4386412258 hasLocation W43864122581 @default.
- W4386412258 hasOpenAccess W4386412258 @default.
- W4386412258 hasPrimaryLocation W43864122581 @default.
- W4386412258 hasRelatedWork W2985924212 @default.
- W4386412258 hasRelatedWork W2996933976 @default.
- W4386412258 hasRelatedWork W3108448481 @default.
- W4386412258 hasRelatedWork W3168994312 @default.
- W4386412258 hasRelatedWork W3195168932 @default.
- W4386412258 hasRelatedWork W4221021152 @default.
- W4386412258 hasRelatedWork W4285343791 @default.
- W4386412258 hasRelatedWork W4377964522 @default.
- W4386412258 hasRelatedWork W4381235817 @default.
- W4386412258 hasRelatedWork W4384345534 @default.
- W4386412258 hasVolume "42" @default.
- W4386412258 isParatext "false" @default.
- W4386412258 isRetracted "false" @default.
- W4386412258 workType "article" @default.