Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386413319> ?p ?o ?g. }
- W4386413319 abstract "Abstract The vertical distance from logging while drilling (LWD) sensors to the bit is often more than 30m (98 ft), which leads to difficulty in performing real-time comparison of LWD and drilling data. This study aims to predict the petrophysical data at the drill bit with the objective of determining the best supervised machine learning algorithm to incorporate to reduce the sensor offset problem. The bulk density and porosity logs are predicted at the bit in this paper using petrophysical and drilling parameters. The results of the model will be used to perform lithology identification in real-time that can be used in real-time drilling analysis. To predict the bulk density and porosity logs at the bit, data from four different wells located in the Norwegian continental shelf in the North Sea was used as a training dataset. The data from a fifth well from the same field was used as a validation dataset. The prediction was based on input variables of the Gamma ray (GR) log data recorded close to the bit, along with other drilling parameters measured at the bit using Measurement while Drilling (MWD) sensors. The five regression models used for prediction and comparative analysis were: Multi-linear regression (MLR), K-nearest neighbor (KNN) regression, Random forest regression (RFR), Support vector machine (SVM) regression and Artificial neural network (ANN). All five models were tested for their accuracy in predicting porosity and bulk density, and it was determined that the KNN model was more effective for predicting both porosity and bulk density. The coefficient of determination (R2) value for the KNN model for porosity and bulk density predictions were 86% and 74% respectively with the least mean square error (MSE) calculated on the blind dataset (data from a well not included in model training). SVM was found to be the least effective model for predicting both porosity and bulk density, as it had the highest MSE value. Prediction of porosity and bulk density logs at the bit using multiple machine learning techniques to eliminate the sensor offset problem have not been performed extensively in the past. The developed machine learning model will improve real-time drilling analysis." @default.
- W4386413319 created "2023-09-05" @default.
- W4386413319 creator A5021890470 @default.
- W4386413319 creator A5025909992 @default.
- W4386413319 creator A5033030044 @default.
- W4386413319 creator A5041205841 @default.
- W4386413319 creator A5082440766 @default.
- W4386413319 creator A5087130654 @default.
- W4386413319 creator A5090966684 @default.
- W4386413319 date "2023-09-05" @default.
- W4386413319 modified "2023-09-27" @default.
- W4386413319 title "Projecting Petrophysical Logs at the Bit through Multi-Well Data Analysis with Machine Learning" @default.
- W4386413319 cites W2027804921 @default.
- W4386413319 cites W2247603160 @default.
- W4386413319 cites W2522150521 @default.
- W4386413319 cites W2890015618 @default.
- W4386413319 cites W2978791398 @default.
- W4386413319 cites W2999411408 @default.
- W4386413319 cites W3000027239 @default.
- W4386413319 cites W3003329782 @default.
- W4386413319 cites W3028914433 @default.
- W4386413319 cites W3089796581 @default.
- W4386413319 cites W3096782969 @default.
- W4386413319 cites W3096852089 @default.
- W4386413319 cites W3097209336 @default.
- W4386413319 cites W3136736330 @default.
- W4386413319 cites W3168439915 @default.
- W4386413319 cites W3198955447 @default.
- W4386413319 cites W3206221984 @default.
- W4386413319 cites W3207625436 @default.
- W4386413319 cites W3216125282 @default.
- W4386413319 cites W4212829804 @default.
- W4386413319 cites W4213078595 @default.
- W4386413319 cites W4213189685 @default.
- W4386413319 cites W4281678772 @default.
- W4386413319 cites W4283723501 @default.
- W4386413319 cites W4294202531 @default.
- W4386413319 cites W4365998811 @default.
- W4386413319 doi "https://doi.org/10.2118/215587-ms" @default.
- W4386413319 hasPublicationYear "2023" @default.
- W4386413319 type Work @default.
- W4386413319 citedByCount "0" @default.
- W4386413319 crossrefType "proceedings-article" @default.
- W4386413319 hasAuthorship W4386413319A5021890470 @default.
- W4386413319 hasAuthorship W4386413319A5025909992 @default.
- W4386413319 hasAuthorship W4386413319A5033030044 @default.
- W4386413319 hasAuthorship W4386413319A5041205841 @default.
- W4386413319 hasAuthorship W4386413319A5082440766 @default.
- W4386413319 hasAuthorship W4386413319A5087130654 @default.
- W4386413319 hasAuthorship W4386413319A5090966684 @default.
- W4386413319 hasConcept C105795698 @default.
- W4386413319 hasConcept C119857082 @default.
- W4386413319 hasConcept C12267149 @default.
- W4386413319 hasConcept C124101348 @default.
- W4386413319 hasConcept C127313418 @default.
- W4386413319 hasConcept C127413603 @default.
- W4386413319 hasConcept C152877465 @default.
- W4386413319 hasConcept C154945302 @default.
- W4386413319 hasConcept C187320778 @default.
- W4386413319 hasConcept C25197100 @default.
- W4386413319 hasConcept C2778382975 @default.
- W4386413319 hasConcept C33923547 @default.
- W4386413319 hasConcept C35817400 @default.
- W4386413319 hasConcept C41008148 @default.
- W4386413319 hasConcept C42222113 @default.
- W4386413319 hasConcept C46293882 @default.
- W4386413319 hasConcept C48921125 @default.
- W4386413319 hasConcept C50644808 @default.
- W4386413319 hasConcept C6648577 @default.
- W4386413319 hasConcept C78519656 @default.
- W4386413319 hasConcept C78762247 @default.
- W4386413319 hasConcept C83546350 @default.
- W4386413319 hasConceptScore W4386413319C105795698 @default.
- W4386413319 hasConceptScore W4386413319C119857082 @default.
- W4386413319 hasConceptScore W4386413319C12267149 @default.
- W4386413319 hasConceptScore W4386413319C124101348 @default.
- W4386413319 hasConceptScore W4386413319C127313418 @default.
- W4386413319 hasConceptScore W4386413319C127413603 @default.
- W4386413319 hasConceptScore W4386413319C152877465 @default.
- W4386413319 hasConceptScore W4386413319C154945302 @default.
- W4386413319 hasConceptScore W4386413319C187320778 @default.
- W4386413319 hasConceptScore W4386413319C25197100 @default.
- W4386413319 hasConceptScore W4386413319C2778382975 @default.
- W4386413319 hasConceptScore W4386413319C33923547 @default.
- W4386413319 hasConceptScore W4386413319C35817400 @default.
- W4386413319 hasConceptScore W4386413319C41008148 @default.
- W4386413319 hasConceptScore W4386413319C42222113 @default.
- W4386413319 hasConceptScore W4386413319C46293882 @default.
- W4386413319 hasConceptScore W4386413319C48921125 @default.
- W4386413319 hasConceptScore W4386413319C50644808 @default.
- W4386413319 hasConceptScore W4386413319C6648577 @default.
- W4386413319 hasConceptScore W4386413319C78519656 @default.
- W4386413319 hasConceptScore W4386413319C78762247 @default.
- W4386413319 hasConceptScore W4386413319C83546350 @default.
- W4386413319 hasLocation W43864133191 @default.
- W4386413319 hasOpenAccess W4386413319 @default.
- W4386413319 hasPrimaryLocation W43864133191 @default.
- W4386413319 hasRelatedWork W1910823204 @default.
- W4386413319 hasRelatedWork W1917348264 @default.
- W4386413319 hasRelatedWork W2064259874 @default.