Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386414250> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4386414250 abstract "Pollen grains are microscopic structures produced by plants in order to reproduce. These grains are necessary for the pollination and fertilization processes, which are vital for the continued existence and diversification of plant species. Botanists and scholars have been interested in the identification and categorization of pollen grains for many years. A convolutional neural network (CNN) model is proposed in this study for the classification of pollen grains from a dataset of 805 photos with 23 annotated classes and an image resolution of 128 × 128 pixels with 3 color channels. The images of pollen grains from 23 plant species make up the publicly accessible Pollen Grain Dataset, which provided the dataset for this study. Based on the physical traits and properties of the pollen grains, the suggested CNN model is intended to properly categorize the pollen grains. The performance of the suggested CNN model is evaluated using various performance metrics. The CNN model’s categorization of pollen grains had an accuracy rate of 87.60%. The outcomes of this study’s investigation show how well CNN models can categorize pollen grains. Compared to manual categorization, which may be error-prone and time-consuming, this automated technique can save a lot of time and effort. According to the observations, the suggested CNN model is efficient at classifying pollen grains and may be applied to several tasks, including recognizing diverse pollen species for use in environmental study, agricultural practice, and scientific inquiry." @default.
- W4386414250 created "2023-09-05" @default.
- W4386414250 creator A5011001413 @default.
- W4386414250 creator A5036534396 @default.
- W4386414250 creator A5048865707 @default.
- W4386414250 creator A5077233767 @default.
- W4386414250 date "2023-07-14" @default.
- W4386414250 modified "2023-09-27" @default.
- W4386414250 title "A Deep Learning Approach for Classification of Pollen Grains using Proposed CNN Model" @default.
- W4386414250 cites W2560631471 @default.
- W4386414250 cites W2890900069 @default.
- W4386414250 cites W3016291243 @default.
- W4386414250 cites W3045073967 @default.
- W4386414250 cites W3091370386 @default.
- W4386414250 cites W3098098512 @default.
- W4386414250 cites W4210993231 @default.
- W4386414250 cites W4220783471 @default.
- W4386414250 cites W4221031694 @default.
- W4386414250 cites W4285041802 @default.
- W4386414250 cites W4308620628 @default.
- W4386414250 cites W4313502831 @default.
- W4386414250 cites W4316658460 @default.
- W4386414250 cites W4324137535 @default.
- W4386414250 doi "https://doi.org/10.1109/wconf58270.2023.10235195" @default.
- W4386414250 hasPublicationYear "2023" @default.
- W4386414250 type Work @default.
- W4386414250 citedByCount "0" @default.
- W4386414250 crossrefType "proceedings-article" @default.
- W4386414250 hasAuthorship W4386414250A5011001413 @default.
- W4386414250 hasAuthorship W4386414250A5036534396 @default.
- W4386414250 hasAuthorship W4386414250A5048865707 @default.
- W4386414250 hasAuthorship W4386414250A5077233767 @default.
- W4386414250 hasConcept C119857082 @default.
- W4386414250 hasConcept C153180895 @default.
- W4386414250 hasConcept C154945302 @default.
- W4386414250 hasConcept C168197293 @default.
- W4386414250 hasConcept C2780618852 @default.
- W4386414250 hasConcept C41008148 @default.
- W4386414250 hasConcept C59822182 @default.
- W4386414250 hasConcept C81363708 @default.
- W4386414250 hasConcept C86803240 @default.
- W4386414250 hasConcept C94124525 @default.
- W4386414250 hasConceptScore W4386414250C119857082 @default.
- W4386414250 hasConceptScore W4386414250C153180895 @default.
- W4386414250 hasConceptScore W4386414250C154945302 @default.
- W4386414250 hasConceptScore W4386414250C168197293 @default.
- W4386414250 hasConceptScore W4386414250C2780618852 @default.
- W4386414250 hasConceptScore W4386414250C41008148 @default.
- W4386414250 hasConceptScore W4386414250C59822182 @default.
- W4386414250 hasConceptScore W4386414250C81363708 @default.
- W4386414250 hasConceptScore W4386414250C86803240 @default.
- W4386414250 hasConceptScore W4386414250C94124525 @default.
- W4386414250 hasLocation W43864142501 @default.
- W4386414250 hasOpenAccess W4386414250 @default.
- W4386414250 hasPrimaryLocation W43864142501 @default.
- W4386414250 hasRelatedWork W1981634673 @default.
- W4386414250 hasRelatedWork W2061827273 @default.
- W4386414250 hasRelatedWork W2767651786 @default.
- W4386414250 hasRelatedWork W2912288872 @default.
- W4386414250 hasRelatedWork W3021430260 @default.
- W4386414250 hasRelatedWork W3027997911 @default.
- W4386414250 hasRelatedWork W4211202963 @default.
- W4386414250 hasRelatedWork W4287776258 @default.
- W4386414250 hasRelatedWork W4384103574 @default.
- W4386414250 hasRelatedWork W4386414250 @default.
- W4386414250 isParatext "false" @default.
- W4386414250 isRetracted "false" @default.
- W4386414250 workType "article" @default.