Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386414423> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386414423 abstract "Skin contributes significantly to controlling body temperature, through sweating and dilation or spasm of blood vessels in response to external temperature changes. It also helps to protect against harmful microorganisms and toxins by producing antimicrobial peptides and other immune system components. Detecting skin dermatitis using an artificial intelligence-based Convolutional Neural Network (CNN) describes the development of a machine-learning model that can accurately classify skin diseases based on images. The study involved collecting a dataset of skin disease images and training a CNN model on this dataset. The model was able to achieve high accuracy in classifying various skin diseases such as eczema, psoriasis, and melanoma. The results demonstrate the potential of using CNNs as a diagnostic tool for dermatologists to accurately detect and diagnose skin diseases. The development of this model has the potential to improve patient outcomes and decrease the time and cost associated with traditional diagnosis methods." @default.
- W4386414423 created "2023-09-05" @default.
- W4386414423 creator A5047084185 @default.
- W4386414423 creator A5054753083 @default.
- W4386414423 creator A5078742860 @default.
- W4386414423 date "2023-07-14" @default.
- W4386414423 modified "2023-09-27" @default.
- W4386414423 title "AI-Based Multiclass Classification of Skin Diseases in Dermoscopy Images Using Convolutional Neural Network" @default.
- W4386414423 cites W2899142219 @default.
- W4386414423 cites W2953793731 @default.
- W4386414423 cites W2973839374 @default.
- W4386414423 cites W2993820249 @default.
- W4386414423 cites W3001669684 @default.
- W4386414423 cites W3006694830 @default.
- W4386414423 cites W3021577186 @default.
- W4386414423 cites W3102443681 @default.
- W4386414423 cites W3109831181 @default.
- W4386414423 cites W3120409733 @default.
- W4386414423 cites W3123982987 @default.
- W4386414423 cites W3158307528 @default.
- W4386414423 cites W3161689197 @default.
- W4386414423 cites W4210562455 @default.
- W4386414423 cites W4296443243 @default.
- W4386414423 cites W4308620628 @default.
- W4386414423 cites W4313270366 @default.
- W4386414423 doi "https://doi.org/10.1109/wconf58270.2023.10235191" @default.
- W4386414423 hasPublicationYear "2023" @default.
- W4386414423 type Work @default.
- W4386414423 citedByCount "0" @default.
- W4386414423 crossrefType "proceedings-article" @default.
- W4386414423 hasAuthorship W4386414423A5047084185 @default.
- W4386414423 hasAuthorship W4386414423A5054753083 @default.
- W4386414423 hasAuthorship W4386414423A5078742860 @default.
- W4386414423 hasConcept C108583219 @default.
- W4386414423 hasConcept C119857082 @default.
- W4386414423 hasConcept C153180895 @default.
- W4386414423 hasConcept C154945302 @default.
- W4386414423 hasConcept C16005928 @default.
- W4386414423 hasConcept C2988168687 @default.
- W4386414423 hasConcept C41008148 @default.
- W4386414423 hasConcept C50644808 @default.
- W4386414423 hasConcept C71924100 @default.
- W4386414423 hasConcept C81363708 @default.
- W4386414423 hasConceptScore W4386414423C108583219 @default.
- W4386414423 hasConceptScore W4386414423C119857082 @default.
- W4386414423 hasConceptScore W4386414423C153180895 @default.
- W4386414423 hasConceptScore W4386414423C154945302 @default.
- W4386414423 hasConceptScore W4386414423C16005928 @default.
- W4386414423 hasConceptScore W4386414423C2988168687 @default.
- W4386414423 hasConceptScore W4386414423C41008148 @default.
- W4386414423 hasConceptScore W4386414423C50644808 @default.
- W4386414423 hasConceptScore W4386414423C71924100 @default.
- W4386414423 hasConceptScore W4386414423C81363708 @default.
- W4386414423 hasLocation W43864144231 @default.
- W4386414423 hasOpenAccess W4386414423 @default.
- W4386414423 hasPrimaryLocation W43864144231 @default.
- W4386414423 hasRelatedWork W2731899572 @default.
- W4386414423 hasRelatedWork W2996856019 @default.
- W4386414423 hasRelatedWork W2999805992 @default.
- W4386414423 hasRelatedWork W3116150086 @default.
- W4386414423 hasRelatedWork W3133861977 @default.
- W4386414423 hasRelatedWork W4200173597 @default.
- W4386414423 hasRelatedWork W4291897433 @default.
- W4386414423 hasRelatedWork W4312417841 @default.
- W4386414423 hasRelatedWork W4321369474 @default.
- W4386414423 hasRelatedWork W4380075502 @default.
- W4386414423 isParatext "false" @default.
- W4386414423 isRetracted "false" @default.
- W4386414423 workType "article" @default.