Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386416109> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4386416109 endingPage "5472" @default.
- W4386416109 startingPage "5448" @default.
- W4386416109 abstract "Atmospheric lidar is susceptible to light attenuation, sky background light and detector dark current during detection, which results in a lot of noise in the lidar return signal. In order to improve the SNR and extract useful signals, this paper proposes a new joint denoising method EEMD-GWO-SVD, which includes empirical mode decomposition (EEMD), grey wolf optimization (GWO) and singular value decomposition (SVD). Firstly, the grey wolf optimization algorithm was used to optimize two parameters of EEMD algorithm according to moderate values: the standard deviation Nstd of adding Gaussian white noise to the signal and the number NE of adding Gaussian white noise. Secondly, the mode components obtained by EEMD-GWO decomposition are screened and reconstructed according to the correlation coefficient method. Finally, the SVD algorithm with strong noise reduction ability was used to further remove the noise in the reconstructed signal, and the lidar return signal with high SNR was obtained. In order to verify the effectiveness of the proposed method, the proposed method was compared with empirical mode decomposition (EMD), complete ensemble empirical modal decomposition (CEEMDAN), wavelet packet decomposition and EEMD-SVD-lifting wavelet transform (EEMD-SVD-LWT). The results show that the noise reduction effect of the proposed method was better than that of the other four methods. This method can eliminate the complex noise in the lidar return signal while retaining all the details of the signal. In fact, the denoised signal is not distorted, the waveform is smooth, the far-field noise interference can be suppressed and the denoised signal is closer to the real signal with higher accuracy, which indicates the feasibility and practicability of the proposed method." @default.
- W4386416109 created "2023-09-05" @default.
- W4386416109 creator A5013194814 @default.
- W4386416109 creator A5077327850 @default.
- W4386416109 creator A5084139831 @default.
- W4386416109 date "2023-09-02" @default.
- W4386416109 modified "2023-10-16" @default.
- W4386416109 title "An EEMD-SVD method based on gray wolf optimization algorithm for lidar signal noise reduction" @default.
- W4386416109 cites W1995341919 @default.
- W4386416109 cites W2000982976 @default.
- W4386416109 cites W2007221293 @default.
- W4386416109 cites W2012783168 @default.
- W4386416109 cites W2063980464 @default.
- W4386416109 cites W2087199341 @default.
- W4386416109 cites W2120390927 @default.
- W4386416109 cites W2125056386 @default.
- W4386416109 cites W3081746730 @default.
- W4386416109 cites W4213126086 @default.
- W4386416109 cites W4214919980 @default.
- W4386416109 cites W4290759897 @default.
- W4386416109 cites W4303980747 @default.
- W4386416109 cites W4311755532 @default.
- W4386416109 cites W4313459845 @default.
- W4386416109 doi "https://doi.org/10.1080/01431161.2023.2249597" @default.
- W4386416109 hasPublicationYear "2023" @default.
- W4386416109 type Work @default.
- W4386416109 citedByCount "0" @default.
- W4386416109 crossrefType "journal-article" @default.
- W4386416109 hasAuthorship W4386416109A5013194814 @default.
- W4386416109 hasAuthorship W4386416109A5077327850 @default.
- W4386416109 hasAuthorship W4386416109A5084139831 @default.
- W4386416109 hasConcept C112633086 @default.
- W4386416109 hasConcept C11413529 @default.
- W4386416109 hasConcept C115961682 @default.
- W4386416109 hasConcept C154945302 @default.
- W4386416109 hasConcept C163294075 @default.
- W4386416109 hasConcept C169334058 @default.
- W4386416109 hasConcept C199360897 @default.
- W4386416109 hasConcept C22789450 @default.
- W4386416109 hasConcept C25570617 @default.
- W4386416109 hasConcept C2779843651 @default.
- W4386416109 hasConcept C33923547 @default.
- W4386416109 hasConcept C41008148 @default.
- W4386416109 hasConcept C4199805 @default.
- W4386416109 hasConcept C47432892 @default.
- W4386416109 hasConcept C76155785 @default.
- W4386416109 hasConcept C99498987 @default.
- W4386416109 hasConceptScore W4386416109C112633086 @default.
- W4386416109 hasConceptScore W4386416109C11413529 @default.
- W4386416109 hasConceptScore W4386416109C115961682 @default.
- W4386416109 hasConceptScore W4386416109C154945302 @default.
- W4386416109 hasConceptScore W4386416109C163294075 @default.
- W4386416109 hasConceptScore W4386416109C169334058 @default.
- W4386416109 hasConceptScore W4386416109C199360897 @default.
- W4386416109 hasConceptScore W4386416109C22789450 @default.
- W4386416109 hasConceptScore W4386416109C25570617 @default.
- W4386416109 hasConceptScore W4386416109C2779843651 @default.
- W4386416109 hasConceptScore W4386416109C33923547 @default.
- W4386416109 hasConceptScore W4386416109C41008148 @default.
- W4386416109 hasConceptScore W4386416109C4199805 @default.
- W4386416109 hasConceptScore W4386416109C47432892 @default.
- W4386416109 hasConceptScore W4386416109C76155785 @default.
- W4386416109 hasConceptScore W4386416109C99498987 @default.
- W4386416109 hasFunder F4320321001 @default.
- W4386416109 hasFunder F4320322877 @default.
- W4386416109 hasIssue "17" @default.
- W4386416109 hasLocation W43864161091 @default.
- W4386416109 hasOpenAccess W4386416109 @default.
- W4386416109 hasPrimaryLocation W43864161091 @default.
- W4386416109 hasRelatedWork W2285338686 @default.
- W4386416109 hasRelatedWork W2319349311 @default.
- W4386416109 hasRelatedWork W2372643369 @default.
- W4386416109 hasRelatedWork W2390084395 @default.
- W4386416109 hasRelatedWork W2537559174 @default.
- W4386416109 hasRelatedWork W3046997388 @default.
- W4386416109 hasRelatedWork W3184590845 @default.
- W4386416109 hasRelatedWork W3205732549 @default.
- W4386416109 hasRelatedWork W4379525284 @default.
- W4386416109 hasRelatedWork W911897692 @default.
- W4386416109 hasVolume "44" @default.
- W4386416109 isParatext "false" @default.
- W4386416109 isRetracted "false" @default.
- W4386416109 workType "article" @default.