Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386417768> ?p ?o ?g. }
- W4386417768 endingPage "3786" @default.
- W4386417768 startingPage "3786" @default.
- W4386417768 abstract "Proposing a matrix transform method to solve a fractional partial differential equation is the main aim of this paper. The main model can be transferred to a partial-integro differential equation (PIDE) with a weakly singular kernel. The spatial direction is approximated by a fourth-order difference scheme. Also, the temporal derivative is discretized via a second-order numerical procedure. First, the spatial derivatives are approximated by a fourth-order operator to compute the second-order derivatives. This process produces a system of differential equations related to the time variable. Then, the Crank–Nicolson idea is utilized to achieve a full-discrete scheme. The kernel of the integral term is discretized by using the Lagrange polynomials to overcome its singularity. Subsequently, we prove the convergence and stability of the new difference scheme by utilizing the Rayleigh–Ritz theorem. Finally, some numerical examples in one-dimensional and two-dimensional cases are presented to verify the theoretical results." @default.
- W4386417768 created "2023-09-05" @default.
- W4386417768 creator A5030064348 @default.
- W4386417768 creator A5059296280 @default.
- W4386417768 creator A5092823951 @default.
- W4386417768 creator A5033046834 @default.
- W4386417768 date "2023-09-03" @default.
- W4386417768 modified "2023-09-27" @default.
- W4386417768 title "Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs" @default.
- W4386417768 cites W1644929731 @default.
- W4386417768 cites W200132056 @default.
- W4386417768 cites W2033471049 @default.
- W4386417768 cites W2069948307 @default.
- W4386417768 cites W2082601313 @default.
- W4386417768 cites W2089072315 @default.
- W4386417768 cites W2092718516 @default.
- W4386417768 cites W2122345489 @default.
- W4386417768 cites W2266528679 @default.
- W4386417768 cites W2885832765 @default.
- W4386417768 cites W3005312945 @default.
- W4386417768 cites W3010144366 @default.
- W4386417768 cites W3044842062 @default.
- W4386417768 cites W3082615630 @default.
- W4386417768 cites W3122805948 @default.
- W4386417768 cites W3129409199 @default.
- W4386417768 cites W3164588017 @default.
- W4386417768 cites W3184571463 @default.
- W4386417768 cites W3188086829 @default.
- W4386417768 cites W4224292293 @default.
- W4386417768 cites W4229706427 @default.
- W4386417768 cites W4254630587 @default.
- W4386417768 cites W4284965979 @default.
- W4386417768 cites W4293217434 @default.
- W4386417768 cites W4301223505 @default.
- W4386417768 cites W4303614092 @default.
- W4386417768 cites W4308426653 @default.
- W4386417768 cites W4311185151 @default.
- W4386417768 cites W4318408320 @default.
- W4386417768 cites W902939226 @default.
- W4386417768 doi "https://doi.org/10.3390/math11173786" @default.
- W4386417768 hasPublicationYear "2023" @default.
- W4386417768 type Work @default.
- W4386417768 citedByCount "0" @default.
- W4386417768 crossrefType "journal-article" @default.
- W4386417768 hasAuthorship W4386417768A5030064348 @default.
- W4386417768 hasAuthorship W4386417768A5033046834 @default.
- W4386417768 hasAuthorship W4386417768A5059296280 @default.
- W4386417768 hasAuthorship W4386417768A5092823951 @default.
- W4386417768 hasBestOaLocation W43864177681 @default.
- W4386417768 hasConcept C106487976 @default.
- W4386417768 hasConcept C114614502 @default.
- W4386417768 hasConcept C134306372 @default.
- W4386417768 hasConcept C159985019 @default.
- W4386417768 hasConcept C16171025 @default.
- W4386417768 hasConcept C162324750 @default.
- W4386417768 hasConcept C192562407 @default.
- W4386417768 hasConcept C2777303404 @default.
- W4386417768 hasConcept C28826006 @default.
- W4386417768 hasConcept C33923547 @default.
- W4386417768 hasConcept C50522688 @default.
- W4386417768 hasConcept C64208722 @default.
- W4386417768 hasConcept C70915906 @default.
- W4386417768 hasConcept C73000952 @default.
- W4386417768 hasConcept C74193536 @default.
- W4386417768 hasConcept C78045399 @default.
- W4386417768 hasConcept C90119067 @default.
- W4386417768 hasConcept C93779851 @default.
- W4386417768 hasConceptScore W4386417768C106487976 @default.
- W4386417768 hasConceptScore W4386417768C114614502 @default.
- W4386417768 hasConceptScore W4386417768C134306372 @default.
- W4386417768 hasConceptScore W4386417768C159985019 @default.
- W4386417768 hasConceptScore W4386417768C16171025 @default.
- W4386417768 hasConceptScore W4386417768C162324750 @default.
- W4386417768 hasConceptScore W4386417768C192562407 @default.
- W4386417768 hasConceptScore W4386417768C2777303404 @default.
- W4386417768 hasConceptScore W4386417768C28826006 @default.
- W4386417768 hasConceptScore W4386417768C33923547 @default.
- W4386417768 hasConceptScore W4386417768C50522688 @default.
- W4386417768 hasConceptScore W4386417768C64208722 @default.
- W4386417768 hasConceptScore W4386417768C70915906 @default.
- W4386417768 hasConceptScore W4386417768C73000952 @default.
- W4386417768 hasConceptScore W4386417768C74193536 @default.
- W4386417768 hasConceptScore W4386417768C78045399 @default.
- W4386417768 hasConceptScore W4386417768C90119067 @default.
- W4386417768 hasConceptScore W4386417768C93779851 @default.
- W4386417768 hasIssue "17" @default.
- W4386417768 hasLocation W43864177681 @default.
- W4386417768 hasOpenAccess W4386417768 @default.
- W4386417768 hasPrimaryLocation W43864177681 @default.
- W4386417768 hasRelatedWork W1697484951 @default.
- W4386417768 hasRelatedWork W2056066177 @default.
- W4386417768 hasRelatedWork W2066872858 @default.
- W4386417768 hasRelatedWork W2136089225 @default.
- W4386417768 hasRelatedWork W3166395799 @default.
- W4386417768 hasRelatedWork W4226238329 @default.
- W4386417768 hasRelatedWork W4297084911 @default.
- W4386417768 hasRelatedWork W4298930346 @default.
- W4386417768 hasRelatedWork W4361230184 @default.