Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386420194> ?p ?o ?g. }
- W4386420194 endingPage "104915" @default.
- W4386420194 startingPage "104915" @default.
- W4386420194 abstract "Virtual Power Plants (VPPs) are becoming popular for managing energy supply in urban environments with Distributed Energy Resources (DERs). However, decision-making for VPPs in such complex environments is challenging due to multiple uncertainties and complexities. This paper proposes an approach that optimizes decision-making for VPPs using Reinforcement Learning (RL) in urban environments with diverse supply-demand profiles and DERs. The approach addresses challenges related to integrating renewable energy sources and achieving energy efficiency. An RL-based VPP system is trained and tested under different scenarios, and a case study is conducted in a real-world urban environment. The proposed approach achieves multi-objective optimization by performing actions such as load-shifting, demand offsetting, and providing ancillary services in response to demand, renewable generators, and market signals. The study validates the effectiveness and robustness of the proposed approach under complex environmental conditions. Results demonstrate that the approach provides optimized decisions in various urban environments with different available resources and supply-demand profiles. This paper contributes to understanding the use of RL in optimizing VPP decision-making and provides valuable insights for policymakers and practitioners in sustainable and resilient cities." @default.
- W4386420194 created "2023-09-05" @default.
- W4386420194 creator A5001817848 @default.
- W4386420194 creator A5002844659 @default.
- W4386420194 creator A5027983195 @default.
- W4386420194 creator A5034021483 @default.
- W4386420194 creator A5046772414 @default.
- W4386420194 creator A5049508796 @default.
- W4386420194 creator A5053793168 @default.
- W4386420194 creator A5070195520 @default.
- W4386420194 creator A5078046901 @default.
- W4386420194 date "2023-12-01" @default.
- W4386420194 modified "2023-10-14" @default.
- W4386420194 title "Supporting virtual power plants decision-making in complex urban environments using reinforcement learning" @default.
- W4386420194 cites W2162020807 @default.
- W4386420194 cites W2237076304 @default.
- W4386420194 cites W2339031742 @default.
- W4386420194 cites W2522769817 @default.
- W4386420194 cites W2621596917 @default.
- W4386420194 cites W2742541437 @default.
- W4386420194 cites W2799883312 @default.
- W4386420194 cites W2889814654 @default.
- W4386420194 cites W2908571787 @default.
- W4386420194 cites W2911256795 @default.
- W4386420194 cites W2911667489 @default.
- W4386420194 cites W2914967911 @default.
- W4386420194 cites W2921732122 @default.
- W4386420194 cites W2958786599 @default.
- W4386420194 cites W2991627874 @default.
- W4386420194 cites W2999953070 @default.
- W4386420194 cites W3027012896 @default.
- W4386420194 cites W3032898188 @default.
- W4386420194 cites W3092305369 @default.
- W4386420194 cites W3109574507 @default.
- W4386420194 cites W3112089724 @default.
- W4386420194 cites W3112388352 @default.
- W4386420194 cites W3137711284 @default.
- W4386420194 cites W3176937560 @default.
- W4386420194 cites W3196203118 @default.
- W4386420194 cites W4213082165 @default.
- W4386420194 cites W4214704004 @default.
- W4386420194 cites W4214877761 @default.
- W4386420194 cites W4281713716 @default.
- W4386420194 cites W4380081625 @default.
- W4386420194 cites W4381186073 @default.
- W4386420194 doi "https://doi.org/10.1016/j.scs.2023.104915" @default.
- W4386420194 hasPublicationYear "2023" @default.
- W4386420194 type Work @default.
- W4386420194 citedByCount "0" @default.
- W4386420194 crossrefType "journal-article" @default.
- W4386420194 hasAuthorship W4386420194A5001817848 @default.
- W4386420194 hasAuthorship W4386420194A5002844659 @default.
- W4386420194 hasAuthorship W4386420194A5027983195 @default.
- W4386420194 hasAuthorship W4386420194A5034021483 @default.
- W4386420194 hasAuthorship W4386420194A5046772414 @default.
- W4386420194 hasAuthorship W4386420194A5049508796 @default.
- W4386420194 hasAuthorship W4386420194A5053793168 @default.
- W4386420194 hasAuthorship W4386420194A5070195520 @default.
- W4386420194 hasAuthorship W4386420194A5078046901 @default.
- W4386420194 hasBestOaLocation W43864201941 @default.
- W4386420194 hasConcept C104317684 @default.
- W4386420194 hasConcept C112930515 @default.
- W4386420194 hasConcept C119599485 @default.
- W4386420194 hasConcept C120330832 @default.
- W4386420194 hasConcept C127413603 @default.
- W4386420194 hasConcept C134560507 @default.
- W4386420194 hasConcept C144133560 @default.
- W4386420194 hasConcept C154945302 @default.
- W4386420194 hasConcept C162324750 @default.
- W4386420194 hasConcept C175444787 @default.
- W4386420194 hasConcept C185592680 @default.
- W4386420194 hasConcept C188573790 @default.
- W4386420194 hasConcept C206658404 @default.
- W4386420194 hasConcept C2776033628 @default.
- W4386420194 hasConcept C2779438525 @default.
- W4386420194 hasConcept C41008148 @default.
- W4386420194 hasConcept C544738498 @default.
- W4386420194 hasConcept C55493867 @default.
- W4386420194 hasConcept C63479239 @default.
- W4386420194 hasConcept C97541855 @default.
- W4386420194 hasConceptScore W4386420194C104317684 @default.
- W4386420194 hasConceptScore W4386420194C112930515 @default.
- W4386420194 hasConceptScore W4386420194C119599485 @default.
- W4386420194 hasConceptScore W4386420194C120330832 @default.
- W4386420194 hasConceptScore W4386420194C127413603 @default.
- W4386420194 hasConceptScore W4386420194C134560507 @default.
- W4386420194 hasConceptScore W4386420194C144133560 @default.
- W4386420194 hasConceptScore W4386420194C154945302 @default.
- W4386420194 hasConceptScore W4386420194C162324750 @default.
- W4386420194 hasConceptScore W4386420194C175444787 @default.
- W4386420194 hasConceptScore W4386420194C185592680 @default.
- W4386420194 hasConceptScore W4386420194C188573790 @default.
- W4386420194 hasConceptScore W4386420194C206658404 @default.
- W4386420194 hasConceptScore W4386420194C2776033628 @default.
- W4386420194 hasConceptScore W4386420194C2779438525 @default.
- W4386420194 hasConceptScore W4386420194C41008148 @default.
- W4386420194 hasConceptScore W4386420194C544738498 @default.
- W4386420194 hasConceptScore W4386420194C55493867 @default.