Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386424895> ?p ?o ?g. }
- W4386424895 endingPage "102001" @default.
- W4386424895 startingPage "102001" @default.
- W4386424895 abstract "Pansharpening refers to fusing a low-resolution multispectral image (LRMS) and a high-resolution panchromatic (PAN) image to generate a high-resolution multispectral image (HRMS). Traditional pansharpening methods use a single pair of LRMS and PAN to generate HRMS at full resolution, but they fail to generate high-quality fused products due to the assumption of a (often inaccurate) linear relationship between the fused products. Convolutional neural network methods, i.e., supervised and unsupervised learning approaches, can model any arbitrary non-linear relationship among data, but performing even worse than traditional methods when testing data are not consistent with training data. Moreover, supervised methods rely on simulating reduced resolution data for training causing information loss at full resolution. Unsupervised pansharpening suffers from distortion due to the lack of reference images and inaccuracy in the estimation of the degradation process. In this paper, we propose a zero-shot semi-supervised method for pansharpening (ZS-Pan), which only requires a single pair of PAN/LRMS images for training and testing networks combining both the pros of supervised and unsupervised methods. Facing with challenges of limited training data and no reference images, the ZS-Pan framework is built with a two-phase three-component model, i.e., the reduced resolution supervised pre-training (RSP), the spatial degradation establishment (SDE), and the full resolution unsupervised generation (FUG) stages. Specifically, a special parameter initialization technique, a data augmentation strategy, and a non-linear degradation network are proposed to improve the representation ability of the network. In our experiments, we evaluate the performance of the proposed framework on different datasets using some state-of-the-art (SOTA) pansharpening approaches for comparison. Results show that our ZS-Pan outperforms these SOTA methods, both visually and quantitatively. Codes will be available after possible acceptance." @default.
- W4386424895 created "2023-09-05" @default.
- W4386424895 creator A5037704808 @default.
- W4386424895 creator A5043777501 @default.
- W4386424895 creator A5061707266 @default.
- W4386424895 creator A5062755510 @default.
- W4386424895 creator A5088224232 @default.
- W4386424895 date "2024-01-01" @default.
- W4386424895 modified "2023-09-29" @default.
- W4386424895 title "Zero-shot semi-supervised learning for pansharpening" @default.
- W4386424895 cites W1885185971 @default.
- W4386424895 cites W1980110630 @default.
- W4386424895 cites W1991460509 @default.
- W4386424895 cites W2022075948 @default.
- W4386424895 cites W2064366277 @default.
- W4386424895 cites W2100329651 @default.
- W4386424895 cites W2111924917 @default.
- W4386424895 cites W2112693869 @default.
- W4386424895 cites W2120053475 @default.
- W4386424895 cites W2123046940 @default.
- W4386424895 cites W2124743705 @default.
- W4386424895 cites W2129953395 @default.
- W4386424895 cites W2133665775 @default.
- W4386424895 cites W2139529730 @default.
- W4386424895 cites W2142843085 @default.
- W4386424895 cites W2171211028 @default.
- W4386424895 cites W2172185514 @default.
- W4386424895 cites W2194775991 @default.
- W4386424895 cites W2339428543 @default.
- W4386424895 cites W2394774286 @default.
- W4386424895 cites W2462592242 @default.
- W4386424895 cites W2560449954 @default.
- W4386424895 cites W2563705555 @default.
- W4386424895 cites W2737207197 @default.
- W4386424895 cites W2765749804 @default.
- W4386424895 cites W2766278341 @default.
- W4386424895 cites W2777033955 @default.
- W4386424895 cites W2792142731 @default.
- W4386424895 cites W2803614623 @default.
- W4386424895 cites W2806865914 @default.
- W4386424895 cites W2889626069 @default.
- W4386424895 cites W2921660688 @default.
- W4386424895 cites W2935896423 @default.
- W4386424895 cites W2947324203 @default.
- W4386424895 cites W2963007295 @default.
- W4386424895 cites W2963183385 @default.
- W4386424895 cites W2963563573 @default.
- W4386424895 cites W2982637563 @default.
- W4386424895 cites W2991350899 @default.
- W4386424895 cites W3014967571 @default.
- W4386424895 cites W3016297315 @default.
- W4386424895 cites W3023991509 @default.
- W4386424895 cites W3041178351 @default.
- W4386424895 cites W3045851210 @default.
- W4386424895 cites W3066471605 @default.
- W4386424895 cites W3096831136 @default.
- W4386424895 cites W3096904276 @default.
- W4386424895 cites W3097824737 @default.
- W4386424895 cites W3120331810 @default.
- W4386424895 cites W3168631257 @default.
- W4386424895 cites W3176195847 @default.
- W4386424895 cites W3203100902 @default.
- W4386424895 cites W3206049508 @default.
- W4386424895 cites W3217107289 @default.
- W4386424895 cites W4226507018 @default.
- W4386424895 cites W4283814658 @default.
- W4386424895 cites W4288391574 @default.
- W4386424895 cites W4289515279 @default.
- W4386424895 cites W4292828907 @default.
- W4386424895 cites W4293704609 @default.
- W4386424895 cites W4294114292 @default.
- W4386424895 cites W4303629092 @default.
- W4386424895 cites W4306411454 @default.
- W4386424895 cites W4312617484 @default.
- W4386424895 cites W4322706739 @default.
- W4386424895 cites W4362714787 @default.
- W4386424895 doi "https://doi.org/10.1016/j.inffus.2023.102001" @default.
- W4386424895 hasPublicationYear "2024" @default.
- W4386424895 type Work @default.
- W4386424895 citedByCount "0" @default.
- W4386424895 crossrefType "journal-article" @default.
- W4386424895 hasAuthorship W4386424895A5037704808 @default.
- W4386424895 hasAuthorship W4386424895A5043777501 @default.
- W4386424895 hasAuthorship W4386424895A5061707266 @default.
- W4386424895 hasAuthorship W4386424895A5062755510 @default.
- W4386424895 hasAuthorship W4386424895A5088224232 @default.
- W4386424895 hasConcept C103278499 @default.
- W4386424895 hasConcept C107445234 @default.
- W4386424895 hasConcept C114466953 @default.
- W4386424895 hasConcept C115961682 @default.
- W4386424895 hasConcept C119857082 @default.
- W4386424895 hasConcept C124101348 @default.
- W4386424895 hasConcept C126780896 @default.
- W4386424895 hasConcept C153180895 @default.
- W4386424895 hasConcept C154945302 @default.
- W4386424895 hasConcept C173163844 @default.
- W4386424895 hasConcept C194257627 @default.
- W4386424895 hasConcept C199360897 @default.