Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386427013> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4386427013 abstract "Early diagnosis of illnesses affecting spinach leaves is essential for maintaining agricultural output and food security. The accuracy and scalability of conventional disease detection techniques, such as human inspection and remote sensing, are constrained. Convolutional neural networks (CNNs) and federated learning are used in this study to categorise spinach leaf illnesses into four severity categories. Four customers participated in the research, each with a separate dataset comprising pictures of spinach leaves with various degrees of disease severity. The federated learning system made developing precise global models easier, protecting data privacy. The findings showed that the federated learning technique uniformly enhanced clients’ performance, with Client 4 attaining the most critical performance metrics: 96.19% Precision, 95.97% Recall, 96.07% F1-Score, and 0.98 Accuracy. Our federated learning models outperformed existing distributed learning techniques and centralised learning approaches when we compared their performances. Using various averaging strategies, including macro, weighted, and micro averages, it was repeatedly shown how well the federated learning methodology classified spinach leaf illnesses. The effectiveness of this strategy implies that by allowing early diagnosis and intervention for several diseases in spinach leaves, it has the potential to increase crop output and provide food security." @default.
- W4386427013 created "2023-09-05" @default.
- W4386427013 creator A5024147005 @default.
- W4386427013 creator A5047312965 @default.
- W4386427013 creator A5061558029 @default.
- W4386427013 date "2023-07-14" @default.
- W4386427013 modified "2023-10-16" @default.
- W4386427013 title "Spinach Leaf Disease Detection and Severity Analysis: Breaking New Ground with Federated Learning and CNN" @default.
- W4386427013 cites W3016513195 @default.
- W4386427013 cites W3086809868 @default.
- W4386427013 cites W3137551443 @default.
- W4386427013 cites W3155429422 @default.
- W4386427013 cites W3159233641 @default.
- W4386427013 cites W3162680951 @default.
- W4386427013 cites W3210681193 @default.
- W4386427013 cites W4285166623 @default.
- W4386427013 cites W4303045583 @default.
- W4386427013 cites W4311005692 @default.
- W4386427013 cites W4320801904 @default.
- W4386427013 cites W4323306744 @default.
- W4386427013 doi "https://doi.org/10.1109/wconf58270.2023.10234982" @default.
- W4386427013 hasPublicationYear "2023" @default.
- W4386427013 type Work @default.
- W4386427013 citedByCount "0" @default.
- W4386427013 crossrefType "proceedings-article" @default.
- W4386427013 hasAuthorship W4386427013A5024147005 @default.
- W4386427013 hasAuthorship W4386427013A5047312965 @default.
- W4386427013 hasAuthorship W4386427013A5061558029 @default.
- W4386427013 hasConcept C108583219 @default.
- W4386427013 hasConcept C118518473 @default.
- W4386427013 hasConcept C119857082 @default.
- W4386427013 hasConcept C148524875 @default.
- W4386427013 hasConcept C154945302 @default.
- W4386427013 hasConcept C166957645 @default.
- W4386427013 hasConcept C18903297 @default.
- W4386427013 hasConcept C205649164 @default.
- W4386427013 hasConcept C2780054949 @default.
- W4386427013 hasConcept C41008148 @default.
- W4386427013 hasConcept C48044578 @default.
- W4386427013 hasConcept C549605437 @default.
- W4386427013 hasConcept C77088390 @default.
- W4386427013 hasConcept C81363708 @default.
- W4386427013 hasConcept C86803240 @default.
- W4386427013 hasConceptScore W4386427013C108583219 @default.
- W4386427013 hasConceptScore W4386427013C118518473 @default.
- W4386427013 hasConceptScore W4386427013C119857082 @default.
- W4386427013 hasConceptScore W4386427013C148524875 @default.
- W4386427013 hasConceptScore W4386427013C154945302 @default.
- W4386427013 hasConceptScore W4386427013C166957645 @default.
- W4386427013 hasConceptScore W4386427013C18903297 @default.
- W4386427013 hasConceptScore W4386427013C205649164 @default.
- W4386427013 hasConceptScore W4386427013C2780054949 @default.
- W4386427013 hasConceptScore W4386427013C41008148 @default.
- W4386427013 hasConceptScore W4386427013C48044578 @default.
- W4386427013 hasConceptScore W4386427013C549605437 @default.
- W4386427013 hasConceptScore W4386427013C77088390 @default.
- W4386427013 hasConceptScore W4386427013C81363708 @default.
- W4386427013 hasConceptScore W4386427013C86803240 @default.
- W4386427013 hasLocation W43864270131 @default.
- W4386427013 hasOpenAccess W4386427013 @default.
- W4386427013 hasPrimaryLocation W43864270131 @default.
- W4386427013 hasRelatedWork W2731899572 @default.
- W4386427013 hasRelatedWork W2999805992 @default.
- W4386427013 hasRelatedWork W3116150086 @default.
- W4386427013 hasRelatedWork W3133861977 @default.
- W4386427013 hasRelatedWork W4200173597 @default.
- W4386427013 hasRelatedWork W4291897433 @default.
- W4386427013 hasRelatedWork W4312417841 @default.
- W4386427013 hasRelatedWork W4321369474 @default.
- W4386427013 hasRelatedWork W4380075502 @default.
- W4386427013 hasRelatedWork W4386214304 @default.
- W4386427013 isParatext "false" @default.
- W4386427013 isRetracted "false" @default.
- W4386427013 workType "article" @default.