Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386427097> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386427097 abstract "In this paper, we present two deep neural network (DNN) architectures for an intelligent reflecting surface (IRS)-enabled communication scenario. The first DNN is designed to obtain an optimal beamforming weight vector which maximizes the achievable rate over the IRS-aided network. The beamforming vector is designed based on a pilot-based channel estimation procedure, which requires only a small fraction of the available reflecting surfaces on the IRS to be active. The obtained vector is fed to the second DNN, which is designed for detecting information symbols from the transmitter. Our simulation study shows that the achievable rate obtained using the designed beamforming vector approaches the maximum achievable rate quickly, as the number of active elements increases. Further, we compute the computational complexities of the proposed architectures. The impact of the number of active elements and the beamforming vector on the performance of the detector is also studied, in terms of the bit error rate." @default.
- W4386427097 created "2023-09-05" @default.
- W4386427097 creator A5031193084 @default.
- W4386427097 creator A5035811459 @default.
- W4386427097 creator A5044295289 @default.
- W4386427097 creator A5071102685 @default.
- W4386427097 creator A5073629218 @default.
- W4386427097 date "2023-07-14" @default.
- W4386427097 modified "2023-09-30" @default.
- W4386427097 title "Deep Learning-Driven Beamforming Vector Design and Data Detection in IRS-Enabled Communication" @default.
- W4386427097 cites W2963504849 @default.
- W4386427097 cites W3001613668 @default.
- W4386427097 cites W3010384738 @default.
- W4386427097 cites W3046938740 @default.
- W4386427097 cites W3120097581 @default.
- W4386427097 cites W3134059753 @default.
- W4386427097 cites W3159402647 @default.
- W4386427097 cites W3160036209 @default.
- W4386427097 cites W3189202224 @default.
- W4386427097 cites W3216108359 @default.
- W4386427097 cites W3217335562 @default.
- W4386427097 cites W4200206200 @default.
- W4386427097 cites W4313015097 @default.
- W4386427097 doi "https://doi.org/10.1109/conecct57959.2023.10234782" @default.
- W4386427097 hasPublicationYear "2023" @default.
- W4386427097 type Work @default.
- W4386427097 citedByCount "0" @default.
- W4386427097 crossrefType "proceedings-article" @default.
- W4386427097 hasAuthorship W4386427097A5031193084 @default.
- W4386427097 hasAuthorship W4386427097A5035811459 @default.
- W4386427097 hasAuthorship W4386427097A5044295289 @default.
- W4386427097 hasAuthorship W4386427097A5071102685 @default.
- W4386427097 hasAuthorship W4386427097A5073629218 @default.
- W4386427097 hasConcept C11413529 @default.
- W4386427097 hasConcept C127162648 @default.
- W4386427097 hasConcept C127413603 @default.
- W4386427097 hasConcept C154945302 @default.
- W4386427097 hasConcept C183877218 @default.
- W4386427097 hasConcept C202444582 @default.
- W4386427097 hasConcept C24326235 @default.
- W4386427097 hasConcept C33923547 @default.
- W4386427097 hasConcept C41008148 @default.
- W4386427097 hasConcept C47798520 @default.
- W4386427097 hasConcept C50644808 @default.
- W4386427097 hasConcept C51568863 @default.
- W4386427097 hasConcept C54197355 @default.
- W4386427097 hasConcept C56296756 @default.
- W4386427097 hasConcept C76155785 @default.
- W4386427097 hasConcept C94915269 @default.
- W4386427097 hasConceptScore W4386427097C11413529 @default.
- W4386427097 hasConceptScore W4386427097C127162648 @default.
- W4386427097 hasConceptScore W4386427097C127413603 @default.
- W4386427097 hasConceptScore W4386427097C154945302 @default.
- W4386427097 hasConceptScore W4386427097C183877218 @default.
- W4386427097 hasConceptScore W4386427097C202444582 @default.
- W4386427097 hasConceptScore W4386427097C24326235 @default.
- W4386427097 hasConceptScore W4386427097C33923547 @default.
- W4386427097 hasConceptScore W4386427097C41008148 @default.
- W4386427097 hasConceptScore W4386427097C47798520 @default.
- W4386427097 hasConceptScore W4386427097C50644808 @default.
- W4386427097 hasConceptScore W4386427097C51568863 @default.
- W4386427097 hasConceptScore W4386427097C54197355 @default.
- W4386427097 hasConceptScore W4386427097C56296756 @default.
- W4386427097 hasConceptScore W4386427097C76155785 @default.
- W4386427097 hasConceptScore W4386427097C94915269 @default.
- W4386427097 hasLocation W43864270971 @default.
- W4386427097 hasOpenAccess W4386427097 @default.
- W4386427097 hasPrimaryLocation W43864270971 @default.
- W4386427097 hasRelatedWork W1495130322 @default.
- W4386427097 hasRelatedWork W1924406375 @default.
- W4386427097 hasRelatedWork W2198746765 @default.
- W4386427097 hasRelatedWork W2246478690 @default.
- W4386427097 hasRelatedWork W2350027934 @default.
- W4386427097 hasRelatedWork W2965359035 @default.
- W4386427097 hasRelatedWork W2984341473 @default.
- W4386427097 hasRelatedWork W3114941719 @default.
- W4386427097 hasRelatedWork W3210207428 @default.
- W4386427097 hasRelatedWork W4296719444 @default.
- W4386427097 isParatext "false" @default.
- W4386427097 isRetracted "false" @default.
- W4386427097 workType "article" @default.