Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386427110> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386427110 abstract "This research paper presents a comparative analysis of emotion recognition using deep learning techniques. The aim of the study was to compare the performance of state-of-the-art deep learning models, namely Convolutional Neural Network (CNN), Mobilenet and Long Short-Term Memory (LSTM). The dataset used for our work is the popular FER - 2013 dataset, which consist of annotated tweets with emotion labels. The proposed work evaluates the models based on their precision, accuracy, recall, and F1-score. The results show that the CNN model, which was trained using the image dataset, outperforms the other models in terms of precision and F1-score. The study also analyzes the effect of various pre-processing techniques on the performance of the models. Overall, the study provides a comprehensive analysis of emotion recognition using deep learning models and highlights the strengths and weaknesses of different approaches. The results of this study are useful for researchers and practitioners working in the fields of natural language processing and emotion recognition." @default.
- W4386427110 created "2023-09-05" @default.
- W4386427110 creator A5004324716 @default.
- W4386427110 creator A5041385342 @default.
- W4386427110 creator A5058570550 @default.
- W4386427110 creator A5088497471 @default.
- W4386427110 creator A5092739897 @default.
- W4386427110 creator A5092739898 @default.
- W4386427110 date "2023-07-14" @default.
- W4386427110 modified "2023-10-16" @default.
- W4386427110 title "Comparative Analysis of Face Emotion Detection based on Deep Learning Techniques" @default.
- W4386427110 cites W2761514455 @default.
- W4386427110 cites W2803098682 @default.
- W4386427110 cites W2805568747 @default.
- W4386427110 cites W4290994048 @default.
- W4386427110 cites W4309721969 @default.
- W4386427110 cites W4315647176 @default.
- W4386427110 cites W4318978442 @default.
- W4386427110 cites W4319077283 @default.
- W4386427110 cites W4327563434 @default.
- W4386427110 cites W4372049133 @default.
- W4386427110 cites W4380881960 @default.
- W4386427110 doi "https://doi.org/10.1109/wconf58270.2023.10235127" @default.
- W4386427110 hasPublicationYear "2023" @default.
- W4386427110 type Work @default.
- W4386427110 citedByCount "0" @default.
- W4386427110 crossrefType "proceedings-article" @default.
- W4386427110 hasAuthorship W4386427110A5004324716 @default.
- W4386427110 hasAuthorship W4386427110A5041385342 @default.
- W4386427110 hasAuthorship W4386427110A5058570550 @default.
- W4386427110 hasAuthorship W4386427110A5088497471 @default.
- W4386427110 hasAuthorship W4386427110A5092739897 @default.
- W4386427110 hasAuthorship W4386427110A5092739898 @default.
- W4386427110 hasConcept C100660578 @default.
- W4386427110 hasConcept C108583219 @default.
- W4386427110 hasConcept C111472728 @default.
- W4386427110 hasConcept C119857082 @default.
- W4386427110 hasConcept C138885662 @default.
- W4386427110 hasConcept C144024400 @default.
- W4386427110 hasConcept C153180895 @default.
- W4386427110 hasConcept C154945302 @default.
- W4386427110 hasConcept C15744967 @default.
- W4386427110 hasConcept C180747234 @default.
- W4386427110 hasConcept C204321447 @default.
- W4386427110 hasConcept C2777438025 @default.
- W4386427110 hasConcept C2779304628 @default.
- W4386427110 hasConcept C28490314 @default.
- W4386427110 hasConcept C31510193 @default.
- W4386427110 hasConcept C36289849 @default.
- W4386427110 hasConcept C41008148 @default.
- W4386427110 hasConcept C63882131 @default.
- W4386427110 hasConcept C81363708 @default.
- W4386427110 hasConceptScore W4386427110C100660578 @default.
- W4386427110 hasConceptScore W4386427110C108583219 @default.
- W4386427110 hasConceptScore W4386427110C111472728 @default.
- W4386427110 hasConceptScore W4386427110C119857082 @default.
- W4386427110 hasConceptScore W4386427110C138885662 @default.
- W4386427110 hasConceptScore W4386427110C144024400 @default.
- W4386427110 hasConceptScore W4386427110C153180895 @default.
- W4386427110 hasConceptScore W4386427110C154945302 @default.
- W4386427110 hasConceptScore W4386427110C15744967 @default.
- W4386427110 hasConceptScore W4386427110C180747234 @default.
- W4386427110 hasConceptScore W4386427110C204321447 @default.
- W4386427110 hasConceptScore W4386427110C2777438025 @default.
- W4386427110 hasConceptScore W4386427110C2779304628 @default.
- W4386427110 hasConceptScore W4386427110C28490314 @default.
- W4386427110 hasConceptScore W4386427110C31510193 @default.
- W4386427110 hasConceptScore W4386427110C36289849 @default.
- W4386427110 hasConceptScore W4386427110C41008148 @default.
- W4386427110 hasConceptScore W4386427110C63882131 @default.
- W4386427110 hasConceptScore W4386427110C81363708 @default.
- W4386427110 hasLocation W43864271101 @default.
- W4386427110 hasOpenAccess W4386427110 @default.
- W4386427110 hasPrimaryLocation W43864271101 @default.
- W4386427110 hasRelatedWork W1775397219 @default.
- W4386427110 hasRelatedWork W2347601237 @default.
- W4386427110 hasRelatedWork W2731899572 @default.
- W4386427110 hasRelatedWork W2897995864 @default.
- W4386427110 hasRelatedWork W3000866861 @default.
- W4386427110 hasRelatedWork W3116150086 @default.
- W4386427110 hasRelatedWork W3133861977 @default.
- W4386427110 hasRelatedWork W4200173597 @default.
- W4386427110 hasRelatedWork W4312417841 @default.
- W4386427110 hasRelatedWork W4321369474 @default.
- W4386427110 isParatext "false" @default.
- W4386427110 isRetracted "false" @default.
- W4386427110 workType "article" @default.