Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386427175> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4386427175 abstract "The use of machine learning in numerous domains is the main topic of this essay. It seeks to give a thorough review of the factors supporting its relevance and importance. This manual’s goal is to describe and emphasize the methods that are currently being used or considered both worldwide and in office settings. To forecast illness prognosis, many methods, tools, training, and education have been used, with varying degrees of success. Using these techniques is essential and acceptable in the field of computational biology. They have specifically been used to forecast breast cancer, whether through the evaluation of data on cancer based on profiles or sequences. Prediction of the enzyme class for unidentified breast cancer patients has been one of the important research fields throughout this time. Within the research community, this specific element has attracted a lot of interest and discussion. We have used machine learning methods and classifiers to address this problem. In the area of studying and forecasting enzyme classes, these techniques have shown to be successful. The primary objective of my research is to develop a model for automated analysis using two different algorithms. The intention behind this approach is to create two distinct models that can be tested for their validity and effectiveness. By doing so, we aim to determine which model is most suitable for protein analysis based on its precision and accuracy. This comparative evaluation will help us identify the algorithm that performs best in terms of accurately analyzing protein data." @default.
- W4386427175 created "2023-09-05" @default.
- W4386427175 creator A5000507167 @default.
- W4386427175 creator A5003704293 @default.
- W4386427175 creator A5021051196 @default.
- W4386427175 creator A5022653286 @default.
- W4386427175 creator A5063105242 @default.
- W4386427175 creator A5078772420 @default.
- W4386427175 date "2023-07-14" @default.
- W4386427175 modified "2023-09-30" @default.
- W4386427175 title "A Comparative Evaluation and Analysis of Machine Learning Approaches for Predicting Breast Cancer" @default.
- W4386427175 cites W2056889406 @default.
- W4386427175 cites W2370924594 @default.
- W4386427175 cites W2613712045 @default.
- W4386427175 cites W2800002784 @default.
- W4386427175 cites W2901952863 @default.
- W4386427175 cites W2963355311 @default.
- W4386427175 cites W3006813215 @default.
- W4386427175 cites W3049280464 @default.
- W4386427175 cites W3083171672 @default.
- W4386427175 cites W3120521175 @default.
- W4386427175 cites W4214692055 @default.
- W4386427175 cites W4281624731 @default.
- W4386427175 cites W4285278337 @default.
- W4386427175 doi "https://doi.org/10.1109/wconf58270.2023.10235048" @default.
- W4386427175 hasPublicationYear "2023" @default.
- W4386427175 type Work @default.
- W4386427175 citedByCount "0" @default.
- W4386427175 crossrefType "proceedings-article" @default.
- W4386427175 hasAuthorship W4386427175A5000507167 @default.
- W4386427175 hasAuthorship W4386427175A5003704293 @default.
- W4386427175 hasAuthorship W4386427175A5021051196 @default.
- W4386427175 hasAuthorship W4386427175A5022653286 @default.
- W4386427175 hasAuthorship W4386427175A5063105242 @default.
- W4386427175 hasAuthorship W4386427175A5078772420 @default.
- W4386427175 hasConcept C119857082 @default.
- W4386427175 hasConcept C121608353 @default.
- W4386427175 hasConcept C124101348 @default.
- W4386427175 hasConcept C126322002 @default.
- W4386427175 hasConcept C154945302 @default.
- W4386427175 hasConcept C158154518 @default.
- W4386427175 hasConcept C17744445 @default.
- W4386427175 hasConcept C199539241 @default.
- W4386427175 hasConcept C202444582 @default.
- W4386427175 hasConcept C2522767166 @default.
- W4386427175 hasConcept C2777212361 @default.
- W4386427175 hasConcept C33923547 @default.
- W4386427175 hasConcept C41008148 @default.
- W4386427175 hasConcept C530470458 @default.
- W4386427175 hasConcept C71924100 @default.
- W4386427175 hasConcept C9652623 @default.
- W4386427175 hasConceptScore W4386427175C119857082 @default.
- W4386427175 hasConceptScore W4386427175C121608353 @default.
- W4386427175 hasConceptScore W4386427175C124101348 @default.
- W4386427175 hasConceptScore W4386427175C126322002 @default.
- W4386427175 hasConceptScore W4386427175C154945302 @default.
- W4386427175 hasConceptScore W4386427175C158154518 @default.
- W4386427175 hasConceptScore W4386427175C17744445 @default.
- W4386427175 hasConceptScore W4386427175C199539241 @default.
- W4386427175 hasConceptScore W4386427175C202444582 @default.
- W4386427175 hasConceptScore W4386427175C2522767166 @default.
- W4386427175 hasConceptScore W4386427175C2777212361 @default.
- W4386427175 hasConceptScore W4386427175C33923547 @default.
- W4386427175 hasConceptScore W4386427175C41008148 @default.
- W4386427175 hasConceptScore W4386427175C530470458 @default.
- W4386427175 hasConceptScore W4386427175C71924100 @default.
- W4386427175 hasConceptScore W4386427175C9652623 @default.
- W4386427175 hasLocation W43864271751 @default.
- W4386427175 hasOpenAccess W4386427175 @default.
- W4386427175 hasPrimaryLocation W43864271751 @default.
- W4386427175 hasRelatedWork W1843462531 @default.
- W4386427175 hasRelatedWork W2961085424 @default.
- W4386427175 hasRelatedWork W3046775127 @default.
- W4386427175 hasRelatedWork W3170094116 @default.
- W4386427175 hasRelatedWork W4205958290 @default.
- W4386427175 hasRelatedWork W4285260836 @default.
- W4386427175 hasRelatedWork W4286629047 @default.
- W4386427175 hasRelatedWork W4306321456 @default.
- W4386427175 hasRelatedWork W4306674287 @default.
- W4386427175 hasRelatedWork W4224009465 @default.
- W4386427175 isParatext "false" @default.
- W4386427175 isRetracted "false" @default.
- W4386427175 workType "article" @default.