Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386427209> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4386427209 abstract "Mental disorders are one of the main causes of diseases and have a significant impact on people’s social and economic well-being. This work focuses on the classification of electroencephalogram (EEG) signals of healthy and depressed subjects using different machine learning models. The EEG is an electro-biological measurement tool that captures the electrical activity of the brain. The variations in characteristics of the EEG of healthy and depressed subjects are used to develop machine learning models for automated classification. By leveraging the individual’s recorded EEG, a machine learning model is developed to separate healthy and depressed individuals The EEG signal collected from the open database is preprocessed with the use of notch filters and an Independent Component Analysis (ICA) module. A set of time and frequency domain features are extracted from EEG signals. Using feature ranking algorithm the features are ranked and the significant features are selected. These features signify the prominent brain region associated with depression and are used for classifying the healthy and depressed subjects. Later, to evaluate the model’s effectiveness and to improve reliability and its possibilities of being implemented in real-time, the performance of different machine learning models such as k-nearest neighbour algorithm (KNN), Support Vector Machine (SVM), logistic regression, and Naïve Bayes is compared." @default.
- W4386427209 created "2023-09-05" @default.
- W4386427209 creator A5085261421 @default.
- W4386427209 creator A5092739933 @default.
- W4386427209 creator A5092739934 @default.
- W4386427209 date "2023-07-14" @default.
- W4386427209 modified "2023-09-30" @default.
- W4386427209 title "EEG Based Machine Learning Models for Automated Depression Detection" @default.
- W4386427209 cites W1005459783 @default.
- W4386427209 cites W2584523198 @default.
- W4386427209 cites W2768454750 @default.
- W4386427209 cites W2898738372 @default.
- W4386427209 cites W2964546587 @default.
- W4386427209 cites W4226097197 @default.
- W4386427209 doi "https://doi.org/10.1109/conecct57959.2023.10234686" @default.
- W4386427209 hasPublicationYear "2023" @default.
- W4386427209 type Work @default.
- W4386427209 citedByCount "0" @default.
- W4386427209 crossrefType "proceedings-article" @default.
- W4386427209 hasAuthorship W4386427209A5085261421 @default.
- W4386427209 hasAuthorship W4386427209A5092739933 @default.
- W4386427209 hasAuthorship W4386427209A5092739934 @default.
- W4386427209 hasConcept C118552586 @default.
- W4386427209 hasConcept C119857082 @default.
- W4386427209 hasConcept C12267149 @default.
- W4386427209 hasConcept C138885662 @default.
- W4386427209 hasConcept C151956035 @default.
- W4386427209 hasConcept C153180895 @default.
- W4386427209 hasConcept C154945302 @default.
- W4386427209 hasConcept C15744967 @default.
- W4386427209 hasConcept C189430467 @default.
- W4386427209 hasConcept C2776401178 @default.
- W4386427209 hasConcept C41008148 @default.
- W4386427209 hasConcept C41895202 @default.
- W4386427209 hasConcept C52001869 @default.
- W4386427209 hasConcept C522805319 @default.
- W4386427209 hasConcept C52622490 @default.
- W4386427209 hasConceptScore W4386427209C118552586 @default.
- W4386427209 hasConceptScore W4386427209C119857082 @default.
- W4386427209 hasConceptScore W4386427209C12267149 @default.
- W4386427209 hasConceptScore W4386427209C138885662 @default.
- W4386427209 hasConceptScore W4386427209C151956035 @default.
- W4386427209 hasConceptScore W4386427209C153180895 @default.
- W4386427209 hasConceptScore W4386427209C154945302 @default.
- W4386427209 hasConceptScore W4386427209C15744967 @default.
- W4386427209 hasConceptScore W4386427209C189430467 @default.
- W4386427209 hasConceptScore W4386427209C2776401178 @default.
- W4386427209 hasConceptScore W4386427209C41008148 @default.
- W4386427209 hasConceptScore W4386427209C41895202 @default.
- W4386427209 hasConceptScore W4386427209C52001869 @default.
- W4386427209 hasConceptScore W4386427209C522805319 @default.
- W4386427209 hasConceptScore W4386427209C52622490 @default.
- W4386427209 hasLocation W43864272091 @default.
- W4386427209 hasOpenAccess W4386427209 @default.
- W4386427209 hasPrimaryLocation W43864272091 @default.
- W4386427209 hasRelatedWork W2130167126 @default.
- W4386427209 hasRelatedWork W2320736787 @default.
- W4386427209 hasRelatedWork W2336974148 @default.
- W4386427209 hasRelatedWork W2546942002 @default.
- W4386427209 hasRelatedWork W3186233728 @default.
- W4386427209 hasRelatedWork W4312478656 @default.
- W4386427209 hasRelatedWork W4327772909 @default.
- W4386427209 hasRelatedWork W4364301914 @default.
- W4386427209 hasRelatedWork W4384828018 @default.
- W4386427209 hasRelatedWork W2345184372 @default.
- W4386427209 isParatext "false" @default.
- W4386427209 isRetracted "false" @default.
- W4386427209 workType "article" @default.