Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386431770> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386431770 endingPage "490" @default.
- W4386431770 startingPage "485" @default.
- W4386431770 abstract "Millions of women globally are affected by breast cancer, which is a serious global health issue. Accurate diagnosis and early detection are essential for enhancing patient outcomes. The development of artificial intelligence (AI) has completely changed the way that breast cancer is diagnosed and treated. For the goal of diagnosing breast cancer, several AI techniques have been used, which include CAD systems, models based on deep learning and machine learning algorithms. To develop models that can precisely categorize and identify malignant lesions, separate harmless from tumors that are malignant and predict patient outcomes, these techniques make use of enormous databases of annotated pictures.AI algorithms can help with risk assessment by spotting high risk people who can benefit from specialized screenings or preventive measures. Despite these encouraging advancements, issues including quality of data, consistency, and ethical issues still exist. This research paper primarily focuses on the significance of AI in detecting breast cancer, the techniques used by AI and the fundamental ideas around it." @default.
- W4386431770 created "2023-09-05" @default.
- W4386431770 creator A5014482999 @default.
- W4386431770 creator A5055988381 @default.
- W4386431770 creator A5074235112 @default.
- W4386431770 creator A5075175847 @default.
- W4386431770 creator A5092741069 @default.
- W4386431770 date "2023-01-01" @default.
- W4386431770 modified "2023-10-16" @default.
- W4386431770 title "Artificial intelligence for Breast Cancer Detection" @default.
- W4386431770 cites W2017036902 @default.
- W4386431770 cites W2269332562 @default.
- W4386431770 cites W2283351472 @default.
- W4386431770 cites W2560617851 @default.
- W4386431770 cites W2601711680 @default.
- W4386431770 cites W2901946084 @default.
- W4386431770 cites W2911605224 @default.
- W4386431770 cites W2986088472 @default.
- W4386431770 cites W2990272570 @default.
- W4386431770 cites W3127935213 @default.
- W4386431770 cites W3173689017 @default.
- W4386431770 cites W3185256838 @default.
- W4386431770 cites W3204013916 @default.
- W4386431770 cites W4211069901 @default.
- W4386431770 doi "https://doi.org/10.46647/ijetms.2023.v07i04.064" @default.
- W4386431770 hasPublicationYear "2023" @default.
- W4386431770 type Work @default.
- W4386431770 citedByCount "0" @default.
- W4386431770 crossrefType "journal-article" @default.
- W4386431770 hasAuthorship W4386431770A5014482999 @default.
- W4386431770 hasAuthorship W4386431770A5055988381 @default.
- W4386431770 hasAuthorship W4386431770A5074235112 @default.
- W4386431770 hasAuthorship W4386431770A5075175847 @default.
- W4386431770 hasAuthorship W4386431770A5092741069 @default.
- W4386431770 hasBestOaLocation W43864317701 @default.
- W4386431770 hasConcept C108583219 @default.
- W4386431770 hasConcept C119857082 @default.
- W4386431770 hasConcept C121608353 @default.
- W4386431770 hasConcept C126322002 @default.
- W4386431770 hasConcept C154945302 @default.
- W4386431770 hasConcept C2776436953 @default.
- W4386431770 hasConcept C41008148 @default.
- W4386431770 hasConcept C530470458 @default.
- W4386431770 hasConcept C71924100 @default.
- W4386431770 hasConcept C94124525 @default.
- W4386431770 hasConceptScore W4386431770C108583219 @default.
- W4386431770 hasConceptScore W4386431770C119857082 @default.
- W4386431770 hasConceptScore W4386431770C121608353 @default.
- W4386431770 hasConceptScore W4386431770C126322002 @default.
- W4386431770 hasConceptScore W4386431770C154945302 @default.
- W4386431770 hasConceptScore W4386431770C2776436953 @default.
- W4386431770 hasConceptScore W4386431770C41008148 @default.
- W4386431770 hasConceptScore W4386431770C530470458 @default.
- W4386431770 hasConceptScore W4386431770C71924100 @default.
- W4386431770 hasConceptScore W4386431770C94124525 @default.
- W4386431770 hasIssue "4" @default.
- W4386431770 hasLocation W43864317701 @default.
- W4386431770 hasOpenAccess W4386431770 @default.
- W4386431770 hasPrimaryLocation W43864317701 @default.
- W4386431770 hasRelatedWork W3014300295 @default.
- W4386431770 hasRelatedWork W3164822677 @default.
- W4386431770 hasRelatedWork W4223943233 @default.
- W4386431770 hasRelatedWork W4225161397 @default.
- W4386431770 hasRelatedWork W4250304930 @default.
- W4386431770 hasRelatedWork W4312200629 @default.
- W4386431770 hasRelatedWork W4360585206 @default.
- W4386431770 hasRelatedWork W4364306694 @default.
- W4386431770 hasRelatedWork W4380075502 @default.
- W4386431770 hasRelatedWork W4380086463 @default.
- W4386431770 hasVolume "7" @default.
- W4386431770 isParatext "false" @default.
- W4386431770 isRetracted "false" @default.
- W4386431770 workType "article" @default.