Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386432075> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4386432075 endingPage "1" @default.
- W4386432075 startingPage "1" @default.
- W4386432075 abstract "Automatic modulation classification (AMC) enables significant applications in both the military and civilian domains. Inspired by the great success of deep learning (DL), a dual-stream neural network using in-phase/quadrature (I/Q) and amplitude/phase (A/P) data has made a superior performance. However, this dual-stream model is oversized (large number of parameters) and time-consuming (high inference time). To deal with that, a novel lightweight single stream neural network made up of group convolutional layer and transformer encoder layer is proposed. Specifically, the group convolutional layer divides the input tensor into different groups for convolution, which needs fewer parameters and has lower computational complexity than commonly used convolutional layers. For the transformer encoder layer, it can generate all time steps’ outputs in parallel by using multi-head attention scheme, which is impossible for the commonly used recurrent-like layers (i.e. the recurrent-like layers output all time steps one by one.). Furthermore, a novel class center distance expansion loss incorporating the cross entropy loss is proposed for model training, which can enlarge the distance of different class centers Finally, the overlapping risk of different class features is reduced. As a result, the inference time of the proposed FastMLDNN is 13× faster than MLDNN, and the model size is near 1/6 as MLDNN, which only sacrifices 0.12% in accuracy. The source code has been released in the github: https://github.com/Singingkettle/ChangShuoRadioRecognition/tree/main/configs/fastmldnn." @default.
- W4386432075 created "2023-09-05" @default.
- W4386432075 creator A5001714538 @default.
- W4386432075 creator A5003576466 @default.
- W4386432075 creator A5030732784 @default.
- W4386432075 creator A5040006617 @default.
- W4386432075 creator A5053721942 @default.
- W4386432075 creator A5073414476 @default.
- W4386432075 date "2023-01-01" @default.
- W4386432075 modified "2023-09-30" @default.
- W4386432075 title "A Fast Multi-Loss Learning Deep Neural Network for Automatic Modulation Classification" @default.
- W4386432075 doi "https://doi.org/10.1109/tccn.2023.3309010" @default.
- W4386432075 hasPublicationYear "2023" @default.
- W4386432075 type Work @default.
- W4386432075 citedByCount "0" @default.
- W4386432075 crossrefType "journal-article" @default.
- W4386432075 hasAuthorship W4386432075A5001714538 @default.
- W4386432075 hasAuthorship W4386432075A5003576466 @default.
- W4386432075 hasAuthorship W4386432075A5030732784 @default.
- W4386432075 hasAuthorship W4386432075A5040006617 @default.
- W4386432075 hasAuthorship W4386432075A5053721942 @default.
- W4386432075 hasAuthorship W4386432075A5073414476 @default.
- W4386432075 hasConcept C101738243 @default.
- W4386432075 hasConcept C108583219 @default.
- W4386432075 hasConcept C111919701 @default.
- W4386432075 hasConcept C11413529 @default.
- W4386432075 hasConcept C118505674 @default.
- W4386432075 hasConcept C136695289 @default.
- W4386432075 hasConcept C147168706 @default.
- W4386432075 hasConcept C153180895 @default.
- W4386432075 hasConcept C154945302 @default.
- W4386432075 hasConcept C157899210 @default.
- W4386432075 hasConcept C2776214188 @default.
- W4386432075 hasConcept C41008148 @default.
- W4386432075 hasConcept C50644808 @default.
- W4386432075 hasConcept C57273362 @default.
- W4386432075 hasConcept C81363708 @default.
- W4386432075 hasConceptScore W4386432075C101738243 @default.
- W4386432075 hasConceptScore W4386432075C108583219 @default.
- W4386432075 hasConceptScore W4386432075C111919701 @default.
- W4386432075 hasConceptScore W4386432075C11413529 @default.
- W4386432075 hasConceptScore W4386432075C118505674 @default.
- W4386432075 hasConceptScore W4386432075C136695289 @default.
- W4386432075 hasConceptScore W4386432075C147168706 @default.
- W4386432075 hasConceptScore W4386432075C153180895 @default.
- W4386432075 hasConceptScore W4386432075C154945302 @default.
- W4386432075 hasConceptScore W4386432075C157899210 @default.
- W4386432075 hasConceptScore W4386432075C2776214188 @default.
- W4386432075 hasConceptScore W4386432075C41008148 @default.
- W4386432075 hasConceptScore W4386432075C50644808 @default.
- W4386432075 hasConceptScore W4386432075C57273362 @default.
- W4386432075 hasConceptScore W4386432075C81363708 @default.
- W4386432075 hasLocation W43864320751 @default.
- W4386432075 hasOpenAccess W4386432075 @default.
- W4386432075 hasPrimaryLocation W43864320751 @default.
- W4386432075 hasRelatedWork W2529014882 @default.
- W4386432075 hasRelatedWork W2669956259 @default.
- W4386432075 hasRelatedWork W2731899572 @default.
- W4386432075 hasRelatedWork W3116150086 @default.
- W4386432075 hasRelatedWork W3133861977 @default.
- W4386432075 hasRelatedWork W4200173597 @default.
- W4386432075 hasRelatedWork W4287995534 @default.
- W4386432075 hasRelatedWork W4312417841 @default.
- W4386432075 hasRelatedWork W4321369474 @default.
- W4386432075 hasRelatedWork W4327774331 @default.
- W4386432075 isParatext "false" @default.
- W4386432075 isRetracted "false" @default.
- W4386432075 workType "article" @default.