Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386432956> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4386432956 endingPage "167" @default.
- W4386432956 startingPage "156" @default.
- W4386432956 abstract "The proliferation of algorithms and commercial tools for the creation of synthetic audio has resulted in a significant increase in the amount of inaccurate information, particularly on social media platforms. As a direct result of this, efforts have been concentrated in recent years on identifying the presence of content of this kind. Despite this, there is still a long way to go until this problem is adequately addressed because of the growing naturalness of fake or synthetic audios. In this study, we proposed different networks configurations: a Custom Convolution Neural Network (cCNN) and two pretrained models (VGG16 and MobileNet) as well as end-to-end models to classify real and fake audios. An extensive experimental analysis was carried out on three classes of audio manipulation of the dataset FoR deepfake audio dataset. Also, we combined such sub-datasets to formulate a combined dataset FoR-combined to enhance the performance of the models. The experimental analysis shows that the proposed cCNN outperforms all the baseline models and other reference works with the highest accuracy of 97.23% on FoR-combined and sets new benchmarks for the datasets." @default.
- W4386432956 created "2023-09-05" @default.
- W4386432956 creator A5018100486 @default.
- W4386432956 creator A5030121038 @default.
- W4386432956 date "2023-01-01" @default.
- W4386432956 modified "2023-09-30" @default.
- W4386432956 title "Deepfakes Audio Detection Leveraging Audio Spectrogram and Convolutional Neural Networks" @default.
- W4386432956 cites W2964166404 @default.
- W4386432956 cites W2967606780 @default.
- W4386432956 cites W2989571531 @default.
- W4386432956 cites W3092271292 @default.
- W4386432956 cites W3093077017 @default.
- W4386432956 cites W3100321043 @default.
- W4386432956 cites W3135809943 @default.
- W4386432956 cites W3164899004 @default.
- W4386432956 cites W3203824801 @default.
- W4386432956 cites W3213515747 @default.
- W4386432956 cites W4312743281 @default.
- W4386432956 cites W4313984387 @default.
- W4386432956 cites W4315865725 @default.
- W4386432956 cites W4362574774 @default.
- W4386432956 doi "https://doi.org/10.1007/978-3-031-43153-1_14" @default.
- W4386432956 hasPublicationYear "2023" @default.
- W4386432956 type Work @default.
- W4386432956 citedByCount "0" @default.
- W4386432956 crossrefType "book-chapter" @default.
- W4386432956 hasAuthorship W4386432956A5018100486 @default.
- W4386432956 hasAuthorship W4386432956A5030121038 @default.
- W4386432956 hasConcept C111368507 @default.
- W4386432956 hasConcept C119857082 @default.
- W4386432956 hasConcept C121332964 @default.
- W4386432956 hasConcept C124101348 @default.
- W4386432956 hasConcept C127220857 @default.
- W4386432956 hasConcept C12725497 @default.
- W4386432956 hasConcept C127313418 @default.
- W4386432956 hasConcept C134537474 @default.
- W4386432956 hasConcept C13895895 @default.
- W4386432956 hasConcept C153180895 @default.
- W4386432956 hasConcept C154945302 @default.
- W4386432956 hasConcept C160372630 @default.
- W4386432956 hasConcept C28490314 @default.
- W4386432956 hasConcept C41008148 @default.
- W4386432956 hasConcept C45273575 @default.
- W4386432956 hasConcept C45347329 @default.
- W4386432956 hasConcept C50644808 @default.
- W4386432956 hasConcept C62520636 @default.
- W4386432956 hasConcept C64922751 @default.
- W4386432956 hasConcept C81363708 @default.
- W4386432956 hasConceptScore W4386432956C111368507 @default.
- W4386432956 hasConceptScore W4386432956C119857082 @default.
- W4386432956 hasConceptScore W4386432956C121332964 @default.
- W4386432956 hasConceptScore W4386432956C124101348 @default.
- W4386432956 hasConceptScore W4386432956C127220857 @default.
- W4386432956 hasConceptScore W4386432956C12725497 @default.
- W4386432956 hasConceptScore W4386432956C127313418 @default.
- W4386432956 hasConceptScore W4386432956C134537474 @default.
- W4386432956 hasConceptScore W4386432956C13895895 @default.
- W4386432956 hasConceptScore W4386432956C153180895 @default.
- W4386432956 hasConceptScore W4386432956C154945302 @default.
- W4386432956 hasConceptScore W4386432956C160372630 @default.
- W4386432956 hasConceptScore W4386432956C28490314 @default.
- W4386432956 hasConceptScore W4386432956C41008148 @default.
- W4386432956 hasConceptScore W4386432956C45273575 @default.
- W4386432956 hasConceptScore W4386432956C45347329 @default.
- W4386432956 hasConceptScore W4386432956C50644808 @default.
- W4386432956 hasConceptScore W4386432956C62520636 @default.
- W4386432956 hasConceptScore W4386432956C64922751 @default.
- W4386432956 hasConceptScore W4386432956C81363708 @default.
- W4386432956 hasLocation W43864329561 @default.
- W4386432956 hasOpenAccess W4386432956 @default.
- W4386432956 hasPrimaryLocation W43864329561 @default.
- W4386432956 hasRelatedWork W2767651786 @default.
- W4386432956 hasRelatedWork W2936488316 @default.
- W4386432956 hasRelatedWork W3005348841 @default.
- W4386432956 hasRelatedWork W3021430260 @default.
- W4386432956 hasRelatedWork W3027997911 @default.
- W4386432956 hasRelatedWork W3091785813 @default.
- W4386432956 hasRelatedWork W4287776258 @default.
- W4386432956 hasRelatedWork W4312417841 @default.
- W4386432956 hasRelatedWork W4379653318 @default.
- W4386432956 hasRelatedWork W4384818045 @default.
- W4386432956 isParatext "false" @default.
- W4386432956 isRetracted "false" @default.
- W4386432956 workType "book-chapter" @default.