Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386435138> ?p ?o ?g. }
- W4386435138 endingPage "107002" @default.
- W4386435138 startingPage "107002" @default.
- W4386435138 abstract "Nowadays, economic and environmental concerns in production have become increasingly significant. To address these issues, the Combined Economic and Emission Dispatch (CEED) problem has been introduced to optimize the power generation process by considering fuel cost and emitted substances. However, due to the nonlinearity and nonconvexity of the objective function, the optimization of CEED remains a challenge. In this paper, we develop a Reinforcement Learning-based Adaptive Differential Evolution (RLADE) algorithm to enhance the optimization performance. The mutation strategy and crossover probability of RLADE are optimized using Reinforcement Learning (RL) to respectively ensure better convergence speed and searchability. Additionally, two modifications of RL, namely the adaptive population size-based state division and fitness-ranking-based reward mechanism, are proposed to improve the accuracy of state division and reward calculation in RL. The experiments conducted in this paper consider two objective formulation methods of CEED problems, namely the quadratic and cubic criterion functions. The mean values and standard deviations of the obtained solutions were utilized to assess the performance of RLADE, as well as other comparative algorithms, namely DE algorithm and two RL-based DE variants. The results clearly demonstrate that RLADE surpasses its counterparts with proportion of 100%, 85.7%, and 100% for the 6-unit and 11-unit quadratic CEED problems, as well as cubic criterion functions, in terms of both search accuracy and convergence ability. Furthermore, the significance of RLADE's superiority is confirmed through the Wilcoxon's signed rank test." @default.
- W4386435138 created "2023-09-05" @default.
- W4386435138 creator A5017459794 @default.
- W4386435138 creator A5085683210 @default.
- W4386435138 creator A5086980220 @default.
- W4386435138 date "2023-11-01" @default.
- W4386435138 modified "2023-10-01" @default.
- W4386435138 title "Solving combined economic and emission dispatch problems using reinforcement learning-based adaptive differential evolution algorithm" @default.
- W4386435138 cites W1595159159 @default.
- W4386435138 cites W1964188610 @default.
- W4386435138 cites W1971557139 @default.
- W4386435138 cites W1976924458 @default.
- W4386435138 cites W1989584438 @default.
- W4386435138 cites W2045463255 @default.
- W4386435138 cites W2064777536 @default.
- W4386435138 cites W2071065188 @default.
- W4386435138 cites W2073085410 @default.
- W4386435138 cites W2113714102 @default.
- W4386435138 cites W2117250519 @default.
- W4386435138 cites W2137084857 @default.
- W4386435138 cites W2137340504 @default.
- W4386435138 cites W2164297615 @default.
- W4386435138 cites W2256702528 @default.
- W4386435138 cites W2285892420 @default.
- W4386435138 cites W2346227340 @default.
- W4386435138 cites W2540547927 @default.
- W4386435138 cites W2727542546 @default.
- W4386435138 cites W2793071389 @default.
- W4386435138 cites W2797204974 @default.
- W4386435138 cites W2919412094 @default.
- W4386435138 cites W2947254759 @default.
- W4386435138 cites W2952021385 @default.
- W4386435138 cites W2955147151 @default.
- W4386435138 cites W2963165400 @default.
- W4386435138 cites W2974922333 @default.
- W4386435138 cites W2982319830 @default.
- W4386435138 cites W3095881823 @default.
- W4386435138 cites W3108785354 @default.
- W4386435138 cites W3118408813 @default.
- W4386435138 cites W3118649479 @default.
- W4386435138 cites W3138105444 @default.
- W4386435138 cites W3139531072 @default.
- W4386435138 cites W3141426068 @default.
- W4386435138 cites W3151306683 @default.
- W4386435138 cites W3157421340 @default.
- W4386435138 cites W3159417211 @default.
- W4386435138 cites W3199597255 @default.
- W4386435138 cites W3200955720 @default.
- W4386435138 cites W3200958796 @default.
- W4386435138 cites W3204514574 @default.
- W4386435138 cites W4200009870 @default.
- W4386435138 cites W4200265636 @default.
- W4386435138 cites W4207031931 @default.
- W4386435138 cites W4283746933 @default.
- W4386435138 cites W4283772399 @default.
- W4386435138 cites W4296191129 @default.
- W4386435138 cites W4375905903 @default.
- W4386435138 doi "https://doi.org/10.1016/j.engappai.2023.107002" @default.
- W4386435138 hasPublicationYear "2023" @default.
- W4386435138 type Work @default.
- W4386435138 citedByCount "0" @default.
- W4386435138 crossrefType "journal-article" @default.
- W4386435138 hasAuthorship W4386435138A5017459794 @default.
- W4386435138 hasAuthorship W4386435138A5085683210 @default.
- W4386435138 hasAuthorship W4386435138A5086980220 @default.
- W4386435138 hasConcept C11413529 @default.
- W4386435138 hasConcept C114614502 @default.
- W4386435138 hasConcept C121332964 @default.
- W4386435138 hasConcept C122507166 @default.
- W4386435138 hasConcept C126255220 @default.
- W4386435138 hasConcept C154945302 @default.
- W4386435138 hasConcept C162324750 @default.
- W4386435138 hasConcept C163258240 @default.
- W4386435138 hasConcept C164226766 @default.
- W4386435138 hasConcept C187633118 @default.
- W4386435138 hasConcept C189430467 @default.
- W4386435138 hasConcept C2777303404 @default.
- W4386435138 hasConcept C33923547 @default.
- W4386435138 hasConcept C41008148 @default.
- W4386435138 hasConcept C50522688 @default.
- W4386435138 hasConcept C60798267 @default.
- W4386435138 hasConcept C62520636 @default.
- W4386435138 hasConcept C74750220 @default.
- W4386435138 hasConcept C89227174 @default.
- W4386435138 hasConcept C94375191 @default.
- W4386435138 hasConcept C97541855 @default.
- W4386435138 hasConceptScore W4386435138C11413529 @default.
- W4386435138 hasConceptScore W4386435138C114614502 @default.
- W4386435138 hasConceptScore W4386435138C121332964 @default.
- W4386435138 hasConceptScore W4386435138C122507166 @default.
- W4386435138 hasConceptScore W4386435138C126255220 @default.
- W4386435138 hasConceptScore W4386435138C154945302 @default.
- W4386435138 hasConceptScore W4386435138C162324750 @default.
- W4386435138 hasConceptScore W4386435138C163258240 @default.
- W4386435138 hasConceptScore W4386435138C164226766 @default.
- W4386435138 hasConceptScore W4386435138C187633118 @default.
- W4386435138 hasConceptScore W4386435138C189430467 @default.
- W4386435138 hasConceptScore W4386435138C2777303404 @default.