Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386435296> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386435296 endingPage "108166" @default.
- W4386435296 startingPage "108166" @default.
- W4386435296 abstract "Cucumber production in China is declining due to various pathologic diseases, but the technology for plant disease detection is not mature and requires high labor costs. Moreover, since planting sites are typically high-density scenes, most photos are shot from various angles with messy backgrounds, resulting in poor classification reliability. In this paper, batches of cucumber leaf image data are collected from agricultural websites and then preprocessed through the image size normalization. A mobile-based recognition algorithm is proposed to identify cucumber diseases from leaf images in natural scenes, enabling farmers to detect diseases more quickly. The proposed algorithm allows farmers to upload cucumber pictures, and rapidly and accurately classify them with high accuracy. With a improved network based on MobileNet V3, the classification of seven kinds of cucumber leaf diseases can be quickly and accurately completed. The network model is achieved by selecting appropriate parameters, optimizers, and batch capacity using the single-variable method. Additionally, a new training strategy called the flooding method is applied in the model, replacing the traditional strategy that relies solely on loss decline. An accuracy of 83.3% is achieved on our custom dataset. Finally, two public datasets, namely PlantVillage and Apple Disease, are selected for migration experiments. The achieved accuracy rates for these datasets are 99% and 98.1% respectively, demonstrating the universality of the proposed strategy. The code for all the experiments will be made available for reference on the GitHub repository at https://github.com/YiQuanMarx/Agricultural_Diseases_Dentification." @default.
- W4386435296 created "2023-09-05" @default.
- W4386435296 creator A5017313598 @default.
- W4386435296 creator A5061832197 @default.
- W4386435296 creator A5068235370 @default.
- W4386435296 creator A5073855975 @default.
- W4386435296 creator A5083932633 @default.
- W4386435296 date "2023-10-01" @default.
- W4386435296 modified "2023-09-27" @default.
- W4386435296 title "Flooding-based MobileNet to identify cucumber diseases from leaf images in natural scenes" @default.
- W4386435296 cites W2019610851 @default.
- W4386435296 cites W2470368200 @default.
- W4386435296 cites W2730129132 @default.
- W4386435296 cites W2982083293 @default.
- W4386435296 cites W3013403470 @default.
- W4386435296 cites W3082289303 @default.
- W4386435296 doi "https://doi.org/10.1016/j.compag.2023.108166" @default.
- W4386435296 hasPublicationYear "2023" @default.
- W4386435296 type Work @default.
- W4386435296 citedByCount "0" @default.
- W4386435296 crossrefType "journal-article" @default.
- W4386435296 hasAuthorship W4386435296A5017313598 @default.
- W4386435296 hasAuthorship W4386435296A5061832197 @default.
- W4386435296 hasAuthorship W4386435296A5068235370 @default.
- W4386435296 hasAuthorship W4386435296A5073855975 @default.
- W4386435296 hasAuthorship W4386435296A5083932633 @default.
- W4386435296 hasConcept C111919701 @default.
- W4386435296 hasConcept C127413603 @default.
- W4386435296 hasConcept C136886441 @default.
- W4386435296 hasConcept C144024400 @default.
- W4386435296 hasConcept C154945302 @default.
- W4386435296 hasConcept C15744967 @default.
- W4386435296 hasConcept C186594467 @default.
- W4386435296 hasConcept C19165224 @default.
- W4386435296 hasConcept C41008148 @default.
- W4386435296 hasConcept C542102704 @default.
- W4386435296 hasConcept C71901391 @default.
- W4386435296 hasConcept C88463610 @default.
- W4386435296 hasConceptScore W4386435296C111919701 @default.
- W4386435296 hasConceptScore W4386435296C127413603 @default.
- W4386435296 hasConceptScore W4386435296C136886441 @default.
- W4386435296 hasConceptScore W4386435296C144024400 @default.
- W4386435296 hasConceptScore W4386435296C154945302 @default.
- W4386435296 hasConceptScore W4386435296C15744967 @default.
- W4386435296 hasConceptScore W4386435296C186594467 @default.
- W4386435296 hasConceptScore W4386435296C19165224 @default.
- W4386435296 hasConceptScore W4386435296C41008148 @default.
- W4386435296 hasConceptScore W4386435296C542102704 @default.
- W4386435296 hasConceptScore W4386435296C71901391 @default.
- W4386435296 hasConceptScore W4386435296C88463610 @default.
- W4386435296 hasLocation W43864352961 @default.
- W4386435296 hasOpenAccess W4386435296 @default.
- W4386435296 hasPrimaryLocation W43864352961 @default.
- W4386435296 hasRelatedWork W1983811306 @default.
- W4386435296 hasRelatedWork W2063185616 @default.
- W4386435296 hasRelatedWork W2089848187 @default.
- W4386435296 hasRelatedWork W2245610811 @default.
- W4386435296 hasRelatedWork W2337631725 @default.
- W4386435296 hasRelatedWork W2358742051 @default.
- W4386435296 hasRelatedWork W2365093105 @default.
- W4386435296 hasRelatedWork W2386315983 @default.
- W4386435296 hasRelatedWork W2516405122 @default.
- W4386435296 hasRelatedWork W2516800609 @default.
- W4386435296 hasVolume "213" @default.
- W4386435296 isParatext "false" @default.
- W4386435296 isRetracted "false" @default.
- W4386435296 workType "article" @default.