Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386444034> ?p ?o ?g. }
- W4386444034 endingPage "4029.e6" @default.
- W4386444034 startingPage "4021" @default.
- W4386444034 abstract "A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations. 1 Werren J.H. Baldo L. Clark M.E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008; 6: 741-751https://doi.org/10.1038/nrmicro1969 Crossref PubMed Scopus (1904) Google Scholar ,2 Hurst G.D.D. Frost C.L. Reproductive parasitism: maternally inherited symbionts in a biparental world. Cold Spring Harb. Perspect. Biol. 2015; 7a017699https://doi.org/10.1101/cshperspect.a017699 Crossref Scopus (82) Google Scholar Recent successes in identifying bacterial factors responsible for reproductive parasitism 3 Beckmann J.F. Fallon A.M. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem. Mol. Biol. 2013; 43: 867-878https://doi.org/10.1016/j.ibmb.2013.07.002 Crossref PubMed Scopus (75) Google Scholar ,4 Beckmann J.F. Ronau J.A. Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2017; 217007https://doi.org/10.1038/nmicrobiol.2017.7 Crossref Scopus (219) Google Scholar ,5 LePage D.P. Metcalf J.A. Bordenstein S.R. On J. Perlmutter J.I. Shropshire J.D. Layton E.M. Funkhouser-Jones L.J. Beckmann J.F. Bordenstein S.R. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature. 2017; 543: 243-247https://doi.org/10.1038/nature21391 Crossref PubMed Scopus (263) Google Scholar ,6 Harumoto T. Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018; 557: 252-255https://doi.org/10.1038/s41586-018-0086-2 Crossref PubMed Scopus (75) Google Scholar ,7 Katsuma S. Hirota K. Matsuda-Imai N. Fukui T. Muro T. Nishino K. Kosako H. Shoji K. Takanashi H. Fujii T. et al. A Wolbachia factor for male killing in lepidopteran insects. Nat. Commun. 2022; 136764https://doi.org/10.1038/s41467-022-34488-y Crossref Scopus (11) Google Scholar as well as further omics approaches 8 Bordenstein S.R. Bordenstein S.R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 2016; 713155https://doi.org/10.1038/ncomms13155 Crossref Scopus (101) Google Scholar ,9 Gillespie J.J. Driscoll T.P. Verhoeve V.I. Rahman M.S. Macaluso K.R. Azad A.F. A tangled web: origins of reproductive parasitism. Genome Biol. Evol. 2018; 10: 2292-2309https://doi.org/10.1093/gbe/evy159 Crossref PubMed Scopus (30) Google Scholar ,10 Schubert A.F. Nguyen J.V. Franklin T.G. Geurink P.P. Roberts C.G. Sanderson D.J. Miller L.N. Ovaa H. Hofmann K. Pruneda J.N. et al. Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J. 2020; 39e105127https://doi.org/10.15252/embj.2020105127 Crossref Scopus (29) Google Scholar ,11 Gerth M. Martinez-Montoya H. Ramirez P. Masson F. Griffin J.S. Aramayo R. Siozios S. Lemaitre B. Mateos M. Hurst G.D.D. Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microb. Genom. 2021; 7000503https://doi.org/10.1099/mgen.0.000503 Crossref Google Scholar ,12 Massey J.H. Newton I.L.G. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol. 2022; 30: 185-198https://doi.org/10.1016/j.tim.2021.06.008 Abstract Full Text Full Text PDF Scopus (14) Google Scholar have highlighted the common appearance of deubiquitinase domains, although their biological roles—in particular, how they link to distinct manipulative phenotypes—remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila, 13 Malogolowkin C. Poulson D.F. Infective transfer of maternally inherited abnormal sex-ratio in Drosophila willistoni. Science. 1957; 12632 Crossref Scopus (18) Google Scholar ,14 Poulson D.F. Cytoplasmic inheritance and hereditary infections in Drosophila. in: Burdette W.J. Methodology in Basic Genetics. Holden-Day, 1963: 404-424 Google Scholar which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain. 6 Harumoto T. Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018; 557: 252-255https://doi.org/10.1038/s41586-018-0086-2 Crossref PubMed Scopus (75) Google Scholar Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis 6 Harumoto T. Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018; 557: 252-255https://doi.org/10.1038/s41586-018-0086-2 Crossref PubMed Scopus (75) Google Scholar ,15 Counce S.J. Poulson D.F. Developmental effects of the sex-ratio agent in embryos of Drosophila willistoni. J. Exp. Zool. 1962; 151: 17-31https://doi.org/10.1002/jez.1401510103 Crossref PubMed Scopus (34) Google Scholar ,16 Tsuchiyama-Omura S. Sakaguchi B. Koga K. Poulson D.F. Morphological features of embryogenesis in Drosophila melanogaster infected with a male-killing Spiroplasma. Zool. Sci. 1988; 5: 375-383 Google Scholar ,17 Bentley J.K. Veneti Z. Heraty J. Hurst G.D.D. The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biol. 2007; 59https://doi.org/10.1186/1741-7007-5-9 Crossref Scopus (32) Google Scholar ,18 Martin J. Chong T. Ferree P.M. Male killing Spiroplasma preferentially disrupts neural development in the Drosophila melanogaster embryo. PLoS One. 2013; 8e79368https://doi.org/10.1371/journal.pone.0079368 Crossref Scopus (20) Google Scholar ,19 Harumoto T. Anbutsu H. Fukatsu T. Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway. PLoS Pathog. 2014; 10e1003956https://doi.org/10.1371/journal.ppat.1003956 Crossref Scopus (24) Google Scholar ; moreover, it highly accumulates on the dosage-compensated male X chromosome, 20 Lucchesi J.C. Kuroda M.I. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 2015; 7a019398https://doi.org/10.1101/cshperspect.a019398 Crossref PubMed Scopus (123) Google Scholar congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome. 6 Harumoto T. Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018; 557: 252-255https://doi.org/10.1038/s41586-018-0086-2 Crossref PubMed Scopus (75) Google Scholar ,21 Veneti Z. Bentley J.K. Koana T. Braig H.R. Hurst G.D.D. A functional dosage compensation complex required for male killing in Drosophila. Science. 2005; 307: 1461-1463https://doi.org/10.1126/science.1107182 Crossref PubMed Scopus (80) Google Scholar ,22 Cheng B. Kuppanda N. Aldrich J.C. Akbari O.S. Ferree P.M. Male-killing Spiroplasma alters behavior of the dosage compensation complex during Drosophila melanogaster embryogenesis. Curr. Biol. 2016; 26: 1339-1345https://doi.org/10.1016/j.cub.2016.03.050 Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar ,23 Harumoto T. Anbutsu H. Lemaitre B. Fukatsu T. Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nat. Commun. 2016; 712781https://doi.org/10.1038/ncomms12781 Crossref Scopus (30) Google Scholar Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously. 6 Harumoto T. Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018; 557: 252-255https://doi.org/10.1038/s41586-018-0086-2 Crossref PubMed Scopus (75) Google Scholar Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost." @default.
- W4386444034 created "2023-09-06" @default.
- W4386444034 creator A5030635153 @default.
- W4386444034 date "2023-09-01" @default.
- W4386444034 modified "2023-10-16" @default.
- W4386444034 title "Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism" @default.
- W4386444034 cites W1496781765 @default.
- W4386444034 cites W1803102843 @default.
- W4386444034 cites W1891633417 @default.
- W4386444034 cites W1966095787 @default.
- W4386444034 cites W1971753295 @default.
- W4386444034 cites W1973055638 @default.
- W4386444034 cites W2016551102 @default.
- W4386444034 cites W2019525085 @default.
- W4386444034 cites W2019907987 @default.
- W4386444034 cites W2020478482 @default.
- W4386444034 cites W2033701307 @default.
- W4386444034 cites W2035424802 @default.
- W4386444034 cites W2047526274 @default.
- W4386444034 cites W2047822292 @default.
- W4386444034 cites W2056986941 @default.
- W4386444034 cites W2066765366 @default.
- W4386444034 cites W2075911100 @default.
- W4386444034 cites W2075939050 @default.
- W4386444034 cites W2077457197 @default.
- W4386444034 cites W2081730917 @default.
- W4386444034 cites W2082372855 @default.
- W4386444034 cites W2085421027 @default.
- W4386444034 cites W2087829285 @default.
- W4386444034 cites W2089402312 @default.
- W4386444034 cites W2089624946 @default.
- W4386444034 cites W2097355553 @default.
- W4386444034 cites W2110643873 @default.
- W4386444034 cites W2113996555 @default.
- W4386444034 cites W2139364069 @default.
- W4386444034 cites W2147368157 @default.
- W4386444034 cites W2147917253 @default.
- W4386444034 cites W2156657815 @default.
- W4386444034 cites W2159352958 @default.
- W4386444034 cites W2164765928 @default.
- W4386444034 cites W2166987747 @default.
- W4386444034 cites W2167279371 @default.
- W4386444034 cites W2175530476 @default.
- W4386444034 cites W2346535385 @default.
- W4386444034 cites W2523680908 @default.
- W4386444034 cites W2553689505 @default.
- W4386444034 cites W2594244343 @default.
- W4386444034 cites W2594916508 @default.
- W4386444034 cites W2769449671 @default.
- W4386444034 cites W2793122718 @default.
- W4386444034 cites W2800140232 @default.
- W4386444034 cites W2883613940 @default.
- W4386444034 cites W2951180101 @default.
- W4386444034 cites W2995511870 @default.
- W4386444034 cites W3000089338 @default.
- W4386444034 cites W3035797211 @default.
- W4386444034 cites W3094967361 @default.
- W4386444034 cites W3095303497 @default.
- W4386444034 cites W3099444316 @default.
- W4386444034 cites W3155435796 @default.
- W4386444034 cites W3177828909 @default.
- W4386444034 cites W3180169131 @default.
- W4386444034 cites W3199573759 @default.
- W4386444034 cites W3201186219 @default.
- W4386444034 cites W4210942468 @default.
- W4386444034 cites W4281790889 @default.
- W4386444034 cites W4282922306 @default.
- W4386444034 cites W4309002124 @default.
- W4386444034 cites W4327547441 @default.
- W4386444034 cites W924012159 @default.
- W4386444034 doi "https://doi.org/10.1016/j.cub.2023.08.032" @default.
- W4386444034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37673069" @default.
- W4386444034 hasPublicationYear "2023" @default.
- W4386444034 type Work @default.
- W4386444034 citedByCount "0" @default.
- W4386444034 crossrefType "journal-article" @default.
- W4386444034 hasAuthorship W4386444034A5030635153 @default.
- W4386444034 hasConcept C126831891 @default.
- W4386444034 hasConcept C147532639 @default.
- W4386444034 hasConcept C18903297 @default.
- W4386444034 hasConcept C2779356413 @default.
- W4386444034 hasConcept C86803240 @default.
- W4386444034 hasConcept C90856448 @default.
- W4386444034 hasConceptScore W4386444034C126831891 @default.
- W4386444034 hasConceptScore W4386444034C147532639 @default.
- W4386444034 hasConceptScore W4386444034C18903297 @default.
- W4386444034 hasConceptScore W4386444034C2779356413 @default.
- W4386444034 hasConceptScore W4386444034C86803240 @default.
- W4386444034 hasConceptScore W4386444034C90856448 @default.
- W4386444034 hasIssue "18" @default.
- W4386444034 hasLocation W43864440341 @default.
- W4386444034 hasLocation W43864440342 @default.
- W4386444034 hasOpenAccess W4386444034 @default.
- W4386444034 hasPrimaryLocation W43864440341 @default.
- W4386444034 hasRelatedWork W1999708661 @default.
- W4386444034 hasRelatedWork W2041912506 @default.
- W4386444034 hasRelatedWork W2062027737 @default.
- W4386444034 hasRelatedWork W2066181665 @default.