Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386446804> ?p ?o ?g. }
- W4386446804 endingPage "125041" @default.
- W4386446804 startingPage "125041" @default.
- W4386446804 abstract "Abstract Domain adaptation (DA) based intelligent fault diagnosis (IFD) methods have attracted great attention in recent years. The key motivation of DA methods is to extract the domain-invariant features. In most cases, the one-dimensional convolutional neural networks are adopted as the feature extractor, in which the kernels are usually single and fixed. However, the monitoring data for IFD usually involve various scale information, and the feature representation extracted by the above models may be incomprehensive. Moreover, the target domain data is only used to narrow the distribution discrepancy in an unsupervised way, which may lead to ignorance of class information of the target domain. To address these issues, in this paper, a two-stage multi-scale domain adversarial fault diagnosis method is proposed. A multi-scale feature extractor with different kernel sizes is designed to acquire more discriminative domain-invariant features. Meanwhile, pseudo label learning is adopted to provide the transfer learning process with the pseudo labels of the target domain, which are generated by a pre-trained network in the first stage and then are optimized through iterations in the second stage. The maximum mean discrepancy is also adopted to enhance the ability of the model for marginal distribution alignment, which can make the model more robust. Thirty-eight transfer tasks from two different datasets were conducted to evaluate the effectiveness of the proposed method. The experimental results demonstrated that the proposed method achieved higher average diagnosis accuracy compared with several popular methods. The superiority of our proposed method was further explained by visualization of learned features." @default.
- W4386446804 created "2023-09-06" @default.
- W4386446804 creator A5003628305 @default.
- W4386446804 creator A5026900457 @default.
- W4386446804 creator A5040571265 @default.
- W4386446804 creator A5076597960 @default.
- W4386446804 creator A5079703084 @default.
- W4386446804 creator A5087723451 @default.
- W4386446804 date "2023-09-18" @default.
- W4386446804 modified "2023-09-26" @default.
- W4386446804 title "A Two-Stage Multi-Scale Domain Adversarial Transfer Learning Method and its Application in Fault Diagnosis" @default.
- W4386446804 cites W2064675550 @default.
- W4386446804 cites W2112796928 @default.
- W4386446804 cites W2115403315 @default.
- W4386446804 cites W2116064496 @default.
- W4386446804 cites W2165698076 @default.
- W4386446804 cites W2556013418 @default.
- W4386446804 cites W2744790985 @default.
- W4386446804 cites W2801396593 @default.
- W4386446804 cites W2903917280 @default.
- W4386446804 cites W2904218127 @default.
- W4386446804 cites W2907541186 @default.
- W4386446804 cites W2910881901 @default.
- W4386446804 cites W2969902687 @default.
- W4386446804 cites W2977117446 @default.
- W4386446804 cites W2998506103 @default.
- W4386446804 cites W3040865353 @default.
- W4386446804 cites W3041133507 @default.
- W4386446804 cites W3048796145 @default.
- W4386446804 cites W3093984614 @default.
- W4386446804 cites W3124219615 @default.
- W4386446804 cites W3128453436 @default.
- W4386446804 cites W3137795735 @default.
- W4386446804 cites W3157123770 @default.
- W4386446804 cites W3167996502 @default.
- W4386446804 cites W4224278522 @default.
- W4386446804 cites W4288068833 @default.
- W4386446804 cites W4307567853 @default.
- W4386446804 cites W4309193521 @default.
- W4386446804 cites W4317038442 @default.
- W4386446804 cites W4327923876 @default.
- W4386446804 cites W4383371592 @default.
- W4386446804 doi "https://doi.org/10.1088/1361-6501/acf6d9" @default.
- W4386446804 hasPublicationYear "2023" @default.
- W4386446804 type Work @default.
- W4386446804 citedByCount "0" @default.
- W4386446804 crossrefType "journal-article" @default.
- W4386446804 hasAuthorship W4386446804A5003628305 @default.
- W4386446804 hasAuthorship W4386446804A5026900457 @default.
- W4386446804 hasAuthorship W4386446804A5040571265 @default.
- W4386446804 hasAuthorship W4386446804A5076597960 @default.
- W4386446804 hasAuthorship W4386446804A5079703084 @default.
- W4386446804 hasAuthorship W4386446804A5087723451 @default.
- W4386446804 hasConcept C117978034 @default.
- W4386446804 hasConcept C119857082 @default.
- W4386446804 hasConcept C121332964 @default.
- W4386446804 hasConcept C124101348 @default.
- W4386446804 hasConcept C127313418 @default.
- W4386446804 hasConcept C127413603 @default.
- W4386446804 hasConcept C134306372 @default.
- W4386446804 hasConcept C138885662 @default.
- W4386446804 hasConcept C150899416 @default.
- W4386446804 hasConcept C153180895 @default.
- W4386446804 hasConcept C154945302 @default.
- W4386446804 hasConcept C165205528 @default.
- W4386446804 hasConcept C175551986 @default.
- W4386446804 hasConcept C21880701 @default.
- W4386446804 hasConcept C2776401178 @default.
- W4386446804 hasConcept C2778755073 @default.
- W4386446804 hasConcept C33923547 @default.
- W4386446804 hasConcept C36503486 @default.
- W4386446804 hasConcept C37736160 @default.
- W4386446804 hasConcept C41008148 @default.
- W4386446804 hasConcept C41895202 @default.
- W4386446804 hasConcept C62520636 @default.
- W4386446804 hasConcept C81363708 @default.
- W4386446804 hasConcept C97931131 @default.
- W4386446804 hasConceptScore W4386446804C117978034 @default.
- W4386446804 hasConceptScore W4386446804C119857082 @default.
- W4386446804 hasConceptScore W4386446804C121332964 @default.
- W4386446804 hasConceptScore W4386446804C124101348 @default.
- W4386446804 hasConceptScore W4386446804C127313418 @default.
- W4386446804 hasConceptScore W4386446804C127413603 @default.
- W4386446804 hasConceptScore W4386446804C134306372 @default.
- W4386446804 hasConceptScore W4386446804C138885662 @default.
- W4386446804 hasConceptScore W4386446804C150899416 @default.
- W4386446804 hasConceptScore W4386446804C153180895 @default.
- W4386446804 hasConceptScore W4386446804C154945302 @default.
- W4386446804 hasConceptScore W4386446804C165205528 @default.
- W4386446804 hasConceptScore W4386446804C175551986 @default.
- W4386446804 hasConceptScore W4386446804C21880701 @default.
- W4386446804 hasConceptScore W4386446804C2776401178 @default.
- W4386446804 hasConceptScore W4386446804C2778755073 @default.
- W4386446804 hasConceptScore W4386446804C33923547 @default.
- W4386446804 hasConceptScore W4386446804C36503486 @default.
- W4386446804 hasConceptScore W4386446804C37736160 @default.
- W4386446804 hasConceptScore W4386446804C41008148 @default.
- W4386446804 hasConceptScore W4386446804C41895202 @default.