Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386447568> ?p ?o ?g. }
- W4386447568 endingPage "655" @default.
- W4386447568 startingPage "635" @default.
- W4386447568 abstract "In recent years, many diseases can be diagnosed in a short time with the use of deep learning models in the field of medicine. Most of the studies in this area focus on adult or pediatric patients. However, deep learning studies for the diagnosis of diseases in neonatal are not sufficient. Also, since it is known that respiratory disorders such as pneumonia have a large place among the causes of neonatal death, early and accurate diagnosis of respiratory diseases in neonates is crucial. For this reason, our study aims to detect the presence of respiratory disorders through the developed deep-learning approach using chest X-ray images of patients hospitalized in the Neonatal Intensive Care Unit. Accordingly, the enhanced version of C+EffxNet, the new hybrid deep learning model, is designed to predict respiratory disorders in neonates. In this version, the features selected by PCA are combined as 100, 200, and 300, then the binary classification process was carried out. In the study, the accuracy and kappa value were obtained as 0.965, and 0.904, respectively before feature merging, while these values were obtained as 0.977, and 0.935 after feature merging. This method, which was developed for the diagnosis of respiratory disorders in neonates, was also subsequently applied to a chest X-ray dataset that is frequently used in the literature for the diagnosis of pediatric pneumonia. For this data set, while the accuracy was 0.992, the kappa value was 0.982. The results obtained confirm the success of the proposed method for both datasets." @default.
- W4386447568 created "2023-09-06" @default.
- W4386447568 creator A5081935765 @default.
- W4386447568 creator A5085653075 @default.
- W4386447568 date "2023-10-01" @default.
- W4386447568 modified "2023-09-30" @default.
- W4386447568 title "A novel deep learning-based approach for prediction of neonatal respiratory disorders from chest X-ray images" @default.
- W4386447568 cites W2051838543 @default.
- W4386447568 cites W2139878679 @default.
- W4386447568 cites W2140343676 @default.
- W4386447568 cites W2481649733 @default.
- W4386447568 cites W2604395535 @default.
- W4386447568 cites W2611423883 @default.
- W4386447568 cites W2782598129 @default.
- W4386447568 cites W2788633781 @default.
- W4386447568 cites W2891756914 @default.
- W4386447568 cites W2956123709 @default.
- W4386447568 cites W2998957378 @default.
- W4386447568 cites W3000044174 @default.
- W4386447568 cites W3016200845 @default.
- W4386447568 cites W3017153481 @default.
- W4386447568 cites W3038837241 @default.
- W4386447568 cites W3040164550 @default.
- W4386447568 cites W3087544059 @default.
- W4386447568 cites W3088698860 @default.
- W4386447568 cites W3089672352 @default.
- W4386447568 cites W3093018928 @default.
- W4386447568 cites W3110091040 @default.
- W4386447568 cites W3120013103 @default.
- W4386447568 cites W3130886625 @default.
- W4386447568 cites W3137238793 @default.
- W4386447568 cites W3152635830 @default.
- W4386447568 cites W3162431581 @default.
- W4386447568 cites W3163224541 @default.
- W4386447568 cites W3168467966 @default.
- W4386447568 cites W3169411633 @default.
- W4386447568 cites W3174453752 @default.
- W4386447568 cites W3181739425 @default.
- W4386447568 cites W3190555781 @default.
- W4386447568 cites W3192289469 @default.
- W4386447568 cites W3194191955 @default.
- W4386447568 cites W3201105737 @default.
- W4386447568 cites W3211766916 @default.
- W4386447568 cites W4200043929 @default.
- W4386447568 cites W4205877511 @default.
- W4386447568 cites W4210598198 @default.
- W4386447568 cites W4224234345 @default.
- W4386447568 cites W4224308287 @default.
- W4386447568 cites W4280600038 @default.
- W4386447568 cites W4281614084 @default.
- W4386447568 cites W4283793640 @default.
- W4386447568 cites W4285736274 @default.
- W4386447568 cites W4285799383 @default.
- W4386447568 cites W4286219641 @default.
- W4386447568 cites W4286423716 @default.
- W4386447568 cites W4293511125 @default.
- W4386447568 cites W4295759167 @default.
- W4386447568 cites W4306839706 @default.
- W4386447568 cites W4309603539 @default.
- W4386447568 cites W4310778803 @default.
- W4386447568 cites W4311809802 @default.
- W4386447568 cites W4313530576 @default.
- W4386447568 cites W4313584126 @default.
- W4386447568 cites W4313649912 @default.
- W4386447568 cites W4313894247 @default.
- W4386447568 cites W4318570691 @default.
- W4386447568 cites W4319790679 @default.
- W4386447568 cites W4320035816 @default.
- W4386447568 cites W4320855790 @default.
- W4386447568 cites W4323047577 @default.
- W4386447568 cites W4323316972 @default.
- W4386447568 cites W4362684161 @default.
- W4386447568 cites W4366376596 @default.
- W4386447568 cites W4377042887 @default.
- W4386447568 cites W4381930451 @default.
- W4386447568 doi "https://doi.org/10.1016/j.bbe.2023.08.004" @default.
- W4386447568 hasPublicationYear "2023" @default.
- W4386447568 type Work @default.
- W4386447568 citedByCount "0" @default.
- W4386447568 crossrefType "journal-article" @default.
- W4386447568 hasAuthorship W4386447568A5081935765 @default.
- W4386447568 hasAuthorship W4386447568A5085653075 @default.
- W4386447568 hasConcept C108583219 @default.
- W4386447568 hasConcept C119857082 @default.
- W4386447568 hasConcept C126322002 @default.
- W4386447568 hasConcept C138885662 @default.
- W4386447568 hasConcept C154945302 @default.
- W4386447568 hasConcept C163864269 @default.
- W4386447568 hasConcept C187212893 @default.
- W4386447568 hasConcept C2776401178 @default.
- W4386447568 hasConcept C2777091541 @default.
- W4386447568 hasConcept C2777914695 @default.
- W4386447568 hasConcept C41008148 @default.
- W4386447568 hasConcept C41895202 @default.
- W4386447568 hasConcept C534529494 @default.
- W4386447568 hasConcept C71924100 @default.
- W4386447568 hasConceptScore W4386447568C108583219 @default.
- W4386447568 hasConceptScore W4386447568C119857082 @default.