Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386453684> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386453684 endingPage "99652" @default.
- W4386453684 startingPage "99638" @default.
- W4386453684 abstract "Over 10% of the world’s population now suffers from chronic kidney disease (CKD), and millions die yearly. CKD should be detected early to extend the lives of those suffering and lower the cost of therapy. Building such a multimedia-driven model is necessary to detect the illness effectively and accurately before it worsens the situation. It is challenging for doctors to identify the various conditions connected to CKD early to prevent the condition. This study introduces a novel hybrid deep learning network model (HDLNet) for CKD early detection and prediction. A deep learning-based technique called the Deep Separable Convolution Neural Network (DSCNN) has been suggested in this research for the early detection of CKD. More processing attributes of characteristics chosen to indicate a kidney issue are extracted by the Capsule Network (CapsNet). Using the Aquila Optimization Algorithm (AO) method, the pertinent characteristics are selected to speed up the categorization process. The necessary features improve classification effectiveness while needing less computational effort. The DSCNN technique is optimized to diagnose kidney illness as CKD or non-CKD using the Sooty Tern Optimization Algorithm (STOA). The CKD dataset, found in the UCI machine learning repository, is then used to test the dataset. Accuracy, sensitivity, MCC, PPV, FPR, FNR, and specificity are the performance metrics for the suggested CKD classification approach. Additional experimental findings demonstrate that the suggested method produces a better categorization of CKD than the present state-of-the-art method." @default.
- W4386453684 created "2023-09-06" @default.
- W4386453684 creator A5052099580 @default.
- W4386453684 creator A5092758941 @default.
- W4386453684 date "2023-01-01" @default.
- W4386453684 modified "2023-09-27" @default.
- W4386453684 title "HDLNET: A Hybrid Deep Learning Network Model with Intelligent iOt for Detection and Classification of Chronic Kidney Disease" @default.
- W4386453684 cites W2900940968 @default.
- W4386453684 cites W2908463019 @default.
- W4386453684 cites W2933013505 @default.
- W4386453684 cites W2940010972 @default.
- W4386453684 cites W2940596626 @default.
- W4386453684 cites W2948149587 @default.
- W4386453684 cites W2955086442 @default.
- W4386453684 cites W2967873583 @default.
- W4386453684 cites W2970997773 @default.
- W4386453684 cites W2972606465 @default.
- W4386453684 cites W2980978803 @default.
- W4386453684 cites W2981157661 @default.
- W4386453684 cites W2997177758 @default.
- W4386453684 cites W3004584928 @default.
- W4386453684 cites W3014376660 @default.
- W4386453684 cites W3021399285 @default.
- W4386453684 cites W3024234640 @default.
- W4386453684 cites W3025767749 @default.
- W4386453684 cites W3027026487 @default.
- W4386453684 cites W3070555885 @default.
- W4386453684 cites W3101897776 @default.
- W4386453684 cites W3125584267 @default.
- W4386453684 cites W3158391672 @default.
- W4386453684 cites W3168947860 @default.
- W4386453684 cites W3172921504 @default.
- W4386453684 cites W3199916091 @default.
- W4386453684 cites W3206573637 @default.
- W4386453684 cites W3208738614 @default.
- W4386453684 cites W4200420294 @default.
- W4386453684 cites W4308313977 @default.
- W4386453684 cites W4309685683 @default.
- W4386453684 cites W4313388800 @default.
- W4386453684 cites W4321116761 @default.
- W4386453684 doi "https://doi.org/10.1109/access.2023.3312183" @default.
- W4386453684 hasPublicationYear "2023" @default.
- W4386453684 type Work @default.
- W4386453684 citedByCount "0" @default.
- W4386453684 crossrefType "journal-article" @default.
- W4386453684 hasAuthorship W4386453684A5052099580 @default.
- W4386453684 hasAuthorship W4386453684A5092758941 @default.
- W4386453684 hasBestOaLocation W43864536841 @default.
- W4386453684 hasConcept C108583219 @default.
- W4386453684 hasConcept C119857082 @default.
- W4386453684 hasConcept C124101348 @default.
- W4386453684 hasConcept C126322002 @default.
- W4386453684 hasConcept C154945302 @default.
- W4386453684 hasConcept C2778653478 @default.
- W4386453684 hasConcept C2908647359 @default.
- W4386453684 hasConcept C41008148 @default.
- W4386453684 hasConcept C50644808 @default.
- W4386453684 hasConcept C71924100 @default.
- W4386453684 hasConcept C94124525 @default.
- W4386453684 hasConcept C99454951 @default.
- W4386453684 hasConceptScore W4386453684C108583219 @default.
- W4386453684 hasConceptScore W4386453684C119857082 @default.
- W4386453684 hasConceptScore W4386453684C124101348 @default.
- W4386453684 hasConceptScore W4386453684C126322002 @default.
- W4386453684 hasConceptScore W4386453684C154945302 @default.
- W4386453684 hasConceptScore W4386453684C2778653478 @default.
- W4386453684 hasConceptScore W4386453684C2908647359 @default.
- W4386453684 hasConceptScore W4386453684C41008148 @default.
- W4386453684 hasConceptScore W4386453684C50644808 @default.
- W4386453684 hasConceptScore W4386453684C71924100 @default.
- W4386453684 hasConceptScore W4386453684C94124525 @default.
- W4386453684 hasConceptScore W4386453684C99454951 @default.
- W4386453684 hasLocation W43864536841 @default.
- W4386453684 hasOpenAccess W4386453684 @default.
- W4386453684 hasPrimaryLocation W43864536841 @default.
- W4386453684 hasRelatedWork W2795261237 @default.
- W4386453684 hasRelatedWork W3014300295 @default.
- W4386453684 hasRelatedWork W3164822677 @default.
- W4386453684 hasRelatedWork W4223943233 @default.
- W4386453684 hasRelatedWork W4225161397 @default.
- W4386453684 hasRelatedWork W4312200629 @default.
- W4386453684 hasRelatedWork W4360585206 @default.
- W4386453684 hasRelatedWork W4364306694 @default.
- W4386453684 hasRelatedWork W4380075502 @default.
- W4386453684 hasRelatedWork W4380086463 @default.
- W4386453684 hasVolume "11" @default.
- W4386453684 isParatext "false" @default.
- W4386453684 isRetracted "false" @default.
- W4386453684 workType "article" @default.