Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386458312> ?p ?o ?g. }
- W4386458312 abstract "The patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter. As a result, avoiding the potential consequences of speech difficulties brought on by the condition depends on getting the appropriate diagnosis early. PD patients' speech signals change significantly from those of healthy individuals. This research presents a hybrid model utilizing improved speech signals with dynamic feature breakdown using CNN and LSTM. The proposed hybrid model employs a new, pre-trained CNN with LSTM to recognize PD in linguistic features utilizing Mel-spectrograms derived from normalized voice signal and dynamic mode decomposition. The proposed Hybrid model works in various phases, which include Noise removal, extraction of Mel-spectrograms, feature extraction using pre-trained CNN model ResNet-50, and the final stage is applied for classification. An experimental analysis was performed using the PC-GITA disease dataset. The proposed hybrid model is compared with traditional NN and well-known machine learning-based CART and SVM & XGBoost models. The accuracy level achieved in Neural Network, CART, SVM, and XGBoost models is 72.69%, 84.21%, 73.51%, and 90.81%. The results show that under these four machine approaches of tenfold cross-validation and dataset splitting without samples overlapping one individual, the proposed hybrid model achieves an accuracy of 93.51%, significantly outperforming traditional ML models utilizing static features in detecting Parkinson's disease." @default.
- W4386458312 created "2023-09-06" @default.
- W4386458312 creator A5011507183 @default.
- W4386458312 creator A5011694017 @default.
- W4386458312 creator A5016172446 @default.
- W4386458312 creator A5039191048 @default.
- W4386458312 creator A5042422524 @default.
- W4386458312 creator A5049378581 @default.
- W4386458312 creator A5062664944 @default.
- W4386458312 creator A5084092269 @default.
- W4386458312 creator A5085253964 @default.
- W4386458312 creator A5089771051 @default.
- W4386458312 date "2023-09-05" @default.
- W4386458312 modified "2023-09-30" @default.
- W4386458312 title "Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of Parkinson’s disease" @default.
- W4386458312 cites W2100534701 @default.
- W4386458312 cites W2529025493 @default.
- W4386458312 cites W2540590185 @default.
- W4386458312 cites W2805394410 @default.
- W4386458312 cites W2836766577 @default.
- W4386458312 cites W2886980811 @default.
- W4386458312 cites W2900011649 @default.
- W4386458312 cites W2903909135 @default.
- W4386458312 cites W2908777476 @default.
- W4386458312 cites W2922842086 @default.
- W4386458312 cites W2953214253 @default.
- W4386458312 cites W2969944904 @default.
- W4386458312 cites W2970186575 @default.
- W4386458312 cites W2972676461 @default.
- W4386458312 cites W2983369448 @default.
- W4386458312 cites W2993429139 @default.
- W4386458312 cites W2996279909 @default.
- W4386458312 cites W3001125332 @default.
- W4386458312 cites W3005419988 @default.
- W4386458312 cites W3005709509 @default.
- W4386458312 cites W3009022967 @default.
- W4386458312 cites W3016618935 @default.
- W4386458312 cites W3029947802 @default.
- W4386458312 cites W3048731797 @default.
- W4386458312 cites W3093759039 @default.
- W4386458312 cites W3125252695 @default.
- W4386458312 cites W3130924396 @default.
- W4386458312 cites W3139505973 @default.
- W4386458312 cites W3204595565 @default.
- W4386458312 cites W3204701599 @default.
- W4386458312 cites W326090046 @default.
- W4386458312 cites W4200315398 @default.
- W4386458312 cites W4205970524 @default.
- W4386458312 cites W4206795434 @default.
- W4386458312 cites W4210437681 @default.
- W4386458312 cites W4220894258 @default.
- W4386458312 cites W4220918305 @default.
- W4386458312 cites W4221108109 @default.
- W4386458312 doi "https://doi.org/10.1038/s41598-023-41314-y" @default.
- W4386458312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37669970" @default.
- W4386458312 hasPublicationYear "2023" @default.
- W4386458312 type Work @default.
- W4386458312 citedByCount "0" @default.
- W4386458312 crossrefType "journal-article" @default.
- W4386458312 hasAuthorship W4386458312A5011507183 @default.
- W4386458312 hasAuthorship W4386458312A5011694017 @default.
- W4386458312 hasAuthorship W4386458312A5016172446 @default.
- W4386458312 hasAuthorship W4386458312A5039191048 @default.
- W4386458312 hasAuthorship W4386458312A5042422524 @default.
- W4386458312 hasAuthorship W4386458312A5049378581 @default.
- W4386458312 hasAuthorship W4386458312A5062664944 @default.
- W4386458312 hasAuthorship W4386458312A5084092269 @default.
- W4386458312 hasAuthorship W4386458312A5085253964 @default.
- W4386458312 hasAuthorship W4386458312A5089771051 @default.
- W4386458312 hasBestOaLocation W43864583121 @default.
- W4386458312 hasConcept C116834253 @default.
- W4386458312 hasConcept C119857082 @default.
- W4386458312 hasConcept C12267149 @default.
- W4386458312 hasConcept C138885662 @default.
- W4386458312 hasConcept C153180895 @default.
- W4386458312 hasConcept C154945302 @default.
- W4386458312 hasConcept C2776401178 @default.
- W4386458312 hasConcept C28490314 @default.
- W4386458312 hasConcept C41008148 @default.
- W4386458312 hasConcept C41895202 @default.
- W4386458312 hasConcept C45273575 @default.
- W4386458312 hasConcept C52622490 @default.
- W4386458312 hasConcept C59822182 @default.
- W4386458312 hasConcept C81363708 @default.
- W4386458312 hasConcept C8642999 @default.
- W4386458312 hasConcept C86803240 @default.
- W4386458312 hasConceptScore W4386458312C116834253 @default.
- W4386458312 hasConceptScore W4386458312C119857082 @default.
- W4386458312 hasConceptScore W4386458312C12267149 @default.
- W4386458312 hasConceptScore W4386458312C138885662 @default.
- W4386458312 hasConceptScore W4386458312C153180895 @default.
- W4386458312 hasConceptScore W4386458312C154945302 @default.
- W4386458312 hasConceptScore W4386458312C2776401178 @default.
- W4386458312 hasConceptScore W4386458312C28490314 @default.
- W4386458312 hasConceptScore W4386458312C41008148 @default.
- W4386458312 hasConceptScore W4386458312C41895202 @default.
- W4386458312 hasConceptScore W4386458312C45273575 @default.
- W4386458312 hasConceptScore W4386458312C52622490 @default.
- W4386458312 hasConceptScore W4386458312C59822182 @default.
- W4386458312 hasConceptScore W4386458312C81363708 @default.