Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386465415> ?p ?o ?g. }
- W4386465415 endingPage "18" @default.
- W4386465415 startingPage "1" @default.
- W4386465415 abstract "Epilepsy patients who are presently refractory may be monitored using a seizure prediction Brain-Computer Interface (BCI), which uses electrodes strategically implanted in the brain to anticipate and regulate the onset and duration of a seizure. Real-time approaches to these technologies have challenges, as seen by seizures’ instantaneous electrographic activity. Electroencephalographic (EEG) signals are inherently non-stationary, which means that the regular and seizure signals differ significantly among people with epilepsy. Due to the restricted number of contacts on electrodes, dynamically processed and collected characteristics cannot be employed in a prediction function without causing significant processing delays. Big data can guarantee secure storage in these situations, and it has the maximum processing capability to identify, record, and analyze time in real-time to conduct the seizure event on the timetable. Seizure prediction and location for huge Scalp EEG recordings have been the focus of this study, which used wearable sensor data and deep learning to use cloud storage to develop the systems. A novel technique is suggested to avoid an epileptic seizure and discover the seizure origin from the utilized wearable sensors. Secondly, deep learning architectures called Clustered Autoencoder with Convolutional Neural Network (CAE-CNN), an expanded optimization methodology is presented based on the Principal Component Analysis (PCA), the Hierarchical Searching Algorithm (HSA), and the Medical Internet of Things (MIoT) has been established to define the suggested frameworks based on the collection of big data storage of the wearable sensors in real-time, automatic computation and storage. According to clinical trials, CAE-CNN outperforms the current wearable sensor-based treatment for unresolved chronic epilepsy patients." @default.
- W4386465415 created "2023-09-06" @default.
- W4386465415 creator A5015832971 @default.
- W4386465415 creator A5016760409 @default.
- W4386465415 creator A5019009541 @default.
- W4386465415 creator A5051755544 @default.
- W4386465415 creator A5078411977 @default.
- W4386465415 creator A5089828406 @default.
- W4386465415 date "2023-08-31" @default.
- W4386465415 modified "2023-09-27" @default.
- W4386465415 title "Prediction and analysis of chronic epilepsy using electroencephalographic signals on medical internet of things platform" @default.
- W4386465415 cites W137320246 @default.
- W4386465415 cites W1698936864 @default.
- W4386465415 cites W1947251450 @default.
- W4386465415 cites W1969483681 @default.
- W4386465415 cites W1997508929 @default.
- W4386465415 cites W2001695150 @default.
- W4386465415 cites W2001739084 @default.
- W4386465415 cites W2004685246 @default.
- W4386465415 cites W2007483873 @default.
- W4386465415 cites W2040554855 @default.
- W4386465415 cites W2045391835 @default.
- W4386465415 cites W2070397020 @default.
- W4386465415 cites W2079059681 @default.
- W4386465415 cites W2130379465 @default.
- W4386465415 cites W2140672768 @default.
- W4386465415 cites W2507528282 @default.
- W4386465415 cites W2767033786 @default.
- W4386465415 cites W2780601052 @default.
- W4386465415 cites W2913622439 @default.
- W4386465415 cites W4236308873 @default.
- W4386465415 doi "https://doi.org/10.3233/ida-237434" @default.
- W4386465415 hasPublicationYear "2023" @default.
- W4386465415 type Work @default.
- W4386465415 citedByCount "0" @default.
- W4386465415 crossrefType "journal-article" @default.
- W4386465415 hasAuthorship W4386465415A5015832971 @default.
- W4386465415 hasAuthorship W4386465415A5016760409 @default.
- W4386465415 hasAuthorship W4386465415A5019009541 @default.
- W4386465415 hasAuthorship W4386465415A5051755544 @default.
- W4386465415 hasAuthorship W4386465415A5078411977 @default.
- W4386465415 hasAuthorship W4386465415A5089828406 @default.
- W4386465415 hasConcept C101738243 @default.
- W4386465415 hasConcept C108583219 @default.
- W4386465415 hasConcept C113843644 @default.
- W4386465415 hasConcept C119857082 @default.
- W4386465415 hasConcept C124101348 @default.
- W4386465415 hasConcept C129307140 @default.
- W4386465415 hasConcept C149635348 @default.
- W4386465415 hasConcept C150594956 @default.
- W4386465415 hasConcept C153180895 @default.
- W4386465415 hasConcept C154945302 @default.
- W4386465415 hasConcept C15744967 @default.
- W4386465415 hasConcept C157915830 @default.
- W4386465415 hasConcept C169760540 @default.
- W4386465415 hasConcept C173201364 @default.
- W4386465415 hasConcept C173608175 @default.
- W4386465415 hasConcept C2778186239 @default.
- W4386465415 hasConcept C2779334592 @default.
- W4386465415 hasConcept C41008148 @default.
- W4386465415 hasConcept C522805319 @default.
- W4386465415 hasConcept C75684735 @default.
- W4386465415 hasConcept C81363708 @default.
- W4386465415 hasConceptScore W4386465415C101738243 @default.
- W4386465415 hasConceptScore W4386465415C108583219 @default.
- W4386465415 hasConceptScore W4386465415C113843644 @default.
- W4386465415 hasConceptScore W4386465415C119857082 @default.
- W4386465415 hasConceptScore W4386465415C124101348 @default.
- W4386465415 hasConceptScore W4386465415C129307140 @default.
- W4386465415 hasConceptScore W4386465415C149635348 @default.
- W4386465415 hasConceptScore W4386465415C150594956 @default.
- W4386465415 hasConceptScore W4386465415C153180895 @default.
- W4386465415 hasConceptScore W4386465415C154945302 @default.
- W4386465415 hasConceptScore W4386465415C15744967 @default.
- W4386465415 hasConceptScore W4386465415C157915830 @default.
- W4386465415 hasConceptScore W4386465415C169760540 @default.
- W4386465415 hasConceptScore W4386465415C173201364 @default.
- W4386465415 hasConceptScore W4386465415C173608175 @default.
- W4386465415 hasConceptScore W4386465415C2778186239 @default.
- W4386465415 hasConceptScore W4386465415C2779334592 @default.
- W4386465415 hasConceptScore W4386465415C41008148 @default.
- W4386465415 hasConceptScore W4386465415C522805319 @default.
- W4386465415 hasConceptScore W4386465415C75684735 @default.
- W4386465415 hasConceptScore W4386465415C81363708 @default.
- W4386465415 hasLocation W43864654151 @default.
- W4386465415 hasOpenAccess W4386465415 @default.
- W4386465415 hasPrimaryLocation W43864654151 @default.
- W4386465415 hasRelatedWork W2669956259 @default.
- W4386465415 hasRelatedWork W2731899572 @default.
- W4386465415 hasRelatedWork W2917517086 @default.
- W4386465415 hasRelatedWork W3014300295 @default.
- W4386465415 hasRelatedWork W3116150086 @default.
- W4386465415 hasRelatedWork W3133861977 @default.
- W4386465415 hasRelatedWork W4200173597 @default.
- W4386465415 hasRelatedWork W4287995534 @default.
- W4386465415 hasRelatedWork W4312417841 @default.
- W4386465415 hasRelatedWork W4321369474 @default.
- W4386465415 isParatext "false" @default.