Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386465612> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4386465612 endingPage "17" @default.
- W4386465612 startingPage "1" @default.
- W4386465612 abstract "Veneer is the critical raw material for manufacturing man-made board products, therefore the quality of the veneer determines the level of the man-made board. However, defects in the veneer may significantly lower its grade. Currently, identifying veneer defects requires manual inspection and subsequent inpainting using a veneer digging machine. Unfortunately, this method only removes the defects of the veneer but ignore the consistency of its texture. To address this issue, we propose a feasible veneer defect reconstruction method that utilizes a texture-aware-multiscale-GAN architecture. Our method performs texture reconstruction of veneer defects to increase the texture information of the reconstructed image while improving the model efficiency, so that generates natural-looking textures in the reconstructed defect areas. The model is trained by end-to-end updating of four cascades of efficient generators and discriminators. We also employed a loss function based on local binary patterns (LBP) to ensure that the restored images contain sufficient texture information. Finally, region normalization is used in the model to enhance the accuracy of the model. Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) are used to evaluate the effectiveness of image restoration, the results show that PSNR of the method reacheds 35.32 and SSIM reaches 0.971. By minimizing the difference between the generated texture and that of the original image, our model produces high-quality results." @default.
- W4386465612 created "2023-09-06" @default.
- W4386465612 creator A5018668652 @default.
- W4386465612 creator A5052304130 @default.
- W4386465612 creator A5063823758 @default.
- W4386465612 date "2023-09-03" @default.
- W4386465612 modified "2023-09-27" @default.
- W4386465612 title "A novel image reconstruction algorithm based on texture aware multiscale GAN for veneer defects" @default.
- W4386465612 cites W1993120651 @default.
- W4386465612 cites W2012875423 @default.
- W4386465612 cites W2054366734 @default.
- W4386465612 cites W2163808566 @default.
- W4386465612 cites W2557414982 @default.
- W4386465612 cites W2732026016 @default.
- W4386465612 cites W2737955903 @default.
- W4386465612 cites W2765811365 @default.
- W4386465612 cites W2910488541 @default.
- W4386465612 cites W2919234133 @default.
- W4386465612 cites W2963420272 @default.
- W4386465612 cites W2982250014 @default.
- W4386465612 cites W2991377405 @default.
- W4386465612 cites W2997669187 @default.
- W4386465612 cites W3151493227 @default.
- W4386465612 cites W4206252778 @default.
- W4386465612 cites W4226140704 @default.
- W4386465612 doi "https://doi.org/10.3233/jifs-231692" @default.
- W4386465612 hasPublicationYear "2023" @default.
- W4386465612 type Work @default.
- W4386465612 citedByCount "0" @default.
- W4386465612 crossrefType "journal-article" @default.
- W4386465612 hasAuthorship W4386465612A5018668652 @default.
- W4386465612 hasAuthorship W4386465612A5052304130 @default.
- W4386465612 hasAuthorship W4386465612A5063823758 @default.
- W4386465612 hasConcept C11413529 @default.
- W4386465612 hasConcept C115961682 @default.
- W4386465612 hasConcept C11727466 @default.
- W4386465612 hasConcept C153180895 @default.
- W4386465612 hasConcept C154945302 @default.
- W4386465612 hasConcept C159985019 @default.
- W4386465612 hasConcept C192562407 @default.
- W4386465612 hasConcept C2779225514 @default.
- W4386465612 hasConcept C2781195486 @default.
- W4386465612 hasConcept C31972630 @default.
- W4386465612 hasConcept C41008148 @default.
- W4386465612 hasConceptScore W4386465612C11413529 @default.
- W4386465612 hasConceptScore W4386465612C115961682 @default.
- W4386465612 hasConceptScore W4386465612C11727466 @default.
- W4386465612 hasConceptScore W4386465612C153180895 @default.
- W4386465612 hasConceptScore W4386465612C154945302 @default.
- W4386465612 hasConceptScore W4386465612C159985019 @default.
- W4386465612 hasConceptScore W4386465612C192562407 @default.
- W4386465612 hasConceptScore W4386465612C2779225514 @default.
- W4386465612 hasConceptScore W4386465612C2781195486 @default.
- W4386465612 hasConceptScore W4386465612C31972630 @default.
- W4386465612 hasConceptScore W4386465612C41008148 @default.
- W4386465612 hasLocation W43864656121 @default.
- W4386465612 hasOpenAccess W4386465612 @default.
- W4386465612 hasPrimaryLocation W43864656121 @default.
- W4386465612 hasRelatedWork W1574999717 @default.
- W4386465612 hasRelatedWork W166251047 @default.
- W4386465612 hasRelatedWork W2020564930 @default.
- W4386465612 hasRelatedWork W2059339452 @default.
- W4386465612 hasRelatedWork W2068162367 @default.
- W4386465612 hasRelatedWork W2093556634 @default.
- W4386465612 hasRelatedWork W2262668847 @default.
- W4386465612 hasRelatedWork W2370766994 @default.
- W4386465612 hasRelatedWork W2794492057 @default.
- W4386465612 hasRelatedWork W2995115364 @default.
- W4386465612 isParatext "false" @default.
- W4386465612 isRetracted "false" @default.
- W4386465612 workType "article" @default.