Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386465669> ?p ?o ?g. }
- W4386465669 endingPage "2261" @default.
- W4386465669 startingPage "2238" @default.
- W4386465669 abstract "AbstractA recent addition to the suite of techniques for local statistical modeling is the implementation of the multiscale geographically weighted regression (MGWR), a multiscale extension to geographically weighted regression (GWR). Using a back-fitting algorithm, MGWR relaxes the restrictive assumption in GWR that all processes being modeled operate at the same spatial scale and allows the estimation of a unique indicator of scale, the bandwidth, for each process. However, the current MGWR framework is limited to use with continuous data making it unsuitable for modeling data that do not typically exhibit a Gaussian distribution. This study expands the application of the MGWR framework to scenarios involving discrete response outcomes (count data following a Poisson’s distribution). Use of this new MGWR Poisson regression (MGWPR) model is demonstrated with a simulated data set and then with COVID-19 case counts within New York City at the zip code level. The results from the simulated data underscore the superiority of the MGWPR model in effectively capturing spatial processes that influence count data patterns, particularly those operating across diverse spatial scales. For empirical data, the results reveal significant spatial variations in relationships between socio-ecological factors and COVID-19 cases – variations often missed by traditional ‘global’ models.Keywords: Local Poisson regressionspatial process scalemultiscale geographically weighted Poisson modelCOVID-19local scoring algorithm Data and codes availability statementThe data and code used in the manuscript are openly available on Figshare: https://doi.org/10.6084/m9.figshare.21743021.v1. A local version of the MGWR repository from https://github.com/pysal/mgwr was used as a base code for the experiments. The simulation experiment code files are available in file ‘Simulation_experiment_version-1_IJGIS.ipynb’. The code runs the experiment once – to obtain the results reported in the paper, the code was run 1000 times. The replication of the NYC Covid data study from DiMaggio et al. (Citation2020) uses the data file named ‘nyc_all_data.csv’. The data are compiled from the sources mentioned by DiMaggio et al. (Citation2020) and are enumerated in Table 1 of the manuscript. The code for the NYC replication study is available in the file ‘NYC_replication_code_submission-IJGIS.ipynb’.Author contributionsMehak Sachdeva: project administration, conceptualization, software development, graphics production, analysis, writing original draft and editing subsequent drafts. A. Stewart Fotheringham: conceptualization, writing original draft and editing subsequent drafts. Ziqi Li: conceptualization, assistance with writing original draft, software development. Hanchen Yu: analytical development, editing original draft, software development.Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 The constant variance assumption for a linear regression model states that the variance of the errors/residuals is assumed to be constant (Poole and O’Farrell Citation1971).2 An up-to-date bibliography of all the peer-reviewed journal articles applying the geographically weighted regression framework and its extensions is available here: https://sgsup.asu.edu/sparc/multiscale-gwr3 We used cores of Intel Xeon Processor E5 v4 Family (E5-2680V4) on the high-performance computing platform at ASU Core research facilities.4 We used the commonly employed statistical variable selection techniques namely, best subset selection and forward selection (Marhuenda et al. Citation2014), using the AICc as the diagnostic criterion and both resulted in the same subset of variables as depicted in EquationEquation (21)(21) E (Positive cases)∼Poisson[Offseti (Total tests) exp (β0,i,bw0+ β1,i,bw1 (% Afr. American)+β2,i,bw2 (pop density)+β3,i,bw3 (% heart) + β4,i,bw4 (% Hispanic)+ β5,i,bw5 (% pub asst)+ β6,i,bw6 (schools per sq. mile))](21) .5 We follow da Silva and Fotheringham (Citation2016)’s effective correction criterion to maintain the expected family-wise error rate and to avoid false positives.6 MGWR desktop software is available for open download at: https://sgsup.asu.edu/sparc/multiscale-gwr; the open-source Python implementation of MGWR is embedded within PySAL: https://github.com/pysal/mgwrAdditional informationFundingThis work is supported by the National Science Foundation (#2117455) awarded to Prof. A. Stewart Fotheringham.Notes on contributorsMehak SachdevaMehak Sachdeva is a Faculty Fellow at the Center for Urban Science and Progress within the Tandon School of Engineering at New York University. E-mail: mehaksachdeva@nyu.edu. Her research interests include developing and testing spatial analytical methods to model and understand urban processes and phenomena.A. Stewart FotheringhamA. Stewart Fotheringham is Regents' Professor of Computational Spatial Science and Director of the Spatial Analysis Research Center in the School of Geographical Sciences and Urban Planning at Arizona State University. E-mail: stewart.fotheringham@asu.edu. His research interests include local spatial models, spatial processes, spatial analytics, and spatial interaction modeling.Ziqi LiZiqi Li is an Assistant Professor of Quantitative Geography in the Department of Geography at Florida State University, Tallahassee, FL 32306. E-mail: Ziqi.Li@fsu.edu. His research interests include spatial statistical modeling, explainable geospatial artificial intelligence, and their applications in interdisciplinary fields.Hanchen YuHanchen Yu is a visiting assistance professor in Urban Governance and Design Thrust, Society Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China. His research interests include spatial analysis, geographic information science, and spatial interaction modeling." @default.
- W4386465669 created "2023-09-06" @default.
- W4386465669 creator A5005672790 @default.
- W4386465669 creator A5014732659 @default.
- W4386465669 creator A5027859763 @default.
- W4386465669 creator A5062914194 @default.
- W4386465669 date "2023-09-05" @default.
- W4386465669 modified "2023-10-03" @default.
- W4386465669 title "On the local modeling of count data: multiscale geographically weighted Poisson regression" @default.
- W4386465669 cites W148230327 @default.
- W4386465669 cites W1497419282 @default.
- W4386465669 cites W1967330083 @default.
- W4386465669 cites W1975529556 @default.
- W4386465669 cites W1984913191 @default.
- W4386465669 cites W2031567285 @default.
- W4386465669 cites W2032807833 @default.
- W4386465669 cites W2049040920 @default.
- W4386465669 cites W2076983043 @default.
- W4386465669 cites W2079478691 @default.
- W4386465669 cites W2084527325 @default.
- W4386465669 cites W2114314286 @default.
- W4386465669 cites W2148323323 @default.
- W4386465669 cites W2162430620 @default.
- W4386465669 cites W2166163519 @default.
- W4386465669 cites W2316206413 @default.
- W4386465669 cites W2747207142 @default.
- W4386465669 cites W2888005101 @default.
- W4386465669 cites W2901615696 @default.
- W4386465669 cites W2912855477 @default.
- W4386465669 cites W2977350438 @default.
- W4386465669 cites W3005470619 @default.
- W4386465669 cites W3005960504 @default.
- W4386465669 cites W3014404004 @default.
- W4386465669 cites W3035792471 @default.
- W4386465669 cites W3040850180 @default.
- W4386465669 cites W3075038947 @default.
- W4386465669 cites W3081236293 @default.
- W4386465669 cites W3120822987 @default.
- W4386465669 cites W3139158003 @default.
- W4386465669 cites W3143479390 @default.
- W4386465669 cites W3181503659 @default.
- W4386465669 cites W3203434175 @default.
- W4386465669 cites W4205820543 @default.
- W4386465669 cites W4210739809 @default.
- W4386465669 cites W4281745985 @default.
- W4386465669 cites W4288625073 @default.
- W4386465669 cites W4378469608 @default.
- W4386465669 doi "https://doi.org/10.1080/13658816.2023.2250838" @default.
- W4386465669 hasPublicationYear "2023" @default.
- W4386465669 type Work @default.
- W4386465669 citedByCount "0" @default.
- W4386465669 crossrefType "journal-article" @default.
- W4386465669 hasAuthorship W4386465669A5005672790 @default.
- W4386465669 hasAuthorship W4386465669A5014732659 @default.
- W4386465669 hasAuthorship W4386465669A5027859763 @default.
- W4386465669 hasAuthorship W4386465669A5062914194 @default.
- W4386465669 hasConcept C100906024 @default.
- W4386465669 hasConcept C105795698 @default.
- W4386465669 hasConcept C124101348 @default.
- W4386465669 hasConcept C144024400 @default.
- W4386465669 hasConcept C149923435 @default.
- W4386465669 hasConcept C152877465 @default.
- W4386465669 hasConcept C159620131 @default.
- W4386465669 hasConcept C177264268 @default.
- W4386465669 hasConcept C199360897 @default.
- W4386465669 hasConcept C205649164 @default.
- W4386465669 hasConcept C2776760102 @default.
- W4386465669 hasConcept C2778755073 @default.
- W4386465669 hasConcept C2908647359 @default.
- W4386465669 hasConcept C33643355 @default.
- W4386465669 hasConcept C33923547 @default.
- W4386465669 hasConcept C41008148 @default.
- W4386465669 hasConcept C58640448 @default.
- W4386465669 hasConcept C73269764 @default.
- W4386465669 hasConceptScore W4386465669C100906024 @default.
- W4386465669 hasConceptScore W4386465669C105795698 @default.
- W4386465669 hasConceptScore W4386465669C124101348 @default.
- W4386465669 hasConceptScore W4386465669C144024400 @default.
- W4386465669 hasConceptScore W4386465669C149923435 @default.
- W4386465669 hasConceptScore W4386465669C152877465 @default.
- W4386465669 hasConceptScore W4386465669C159620131 @default.
- W4386465669 hasConceptScore W4386465669C177264268 @default.
- W4386465669 hasConceptScore W4386465669C199360897 @default.
- W4386465669 hasConceptScore W4386465669C205649164 @default.
- W4386465669 hasConceptScore W4386465669C2776760102 @default.
- W4386465669 hasConceptScore W4386465669C2778755073 @default.
- W4386465669 hasConceptScore W4386465669C2908647359 @default.
- W4386465669 hasConceptScore W4386465669C33643355 @default.
- W4386465669 hasConceptScore W4386465669C33923547 @default.
- W4386465669 hasConceptScore W4386465669C41008148 @default.
- W4386465669 hasConceptScore W4386465669C58640448 @default.
- W4386465669 hasConceptScore W4386465669C73269764 @default.
- W4386465669 hasFunder F4320306076 @default.
- W4386465669 hasIssue "10" @default.
- W4386465669 hasLocation W43864656691 @default.
- W4386465669 hasOpenAccess W4386465669 @default.
- W4386465669 hasPrimaryLocation W43864656691 @default.
- W4386465669 hasRelatedWork W1557478674 @default.