Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386466575> ?p ?o ?g. }
- W4386466575 abstract "Optical density is a proxy of total biomass concentration and is commonly used for measuring the growth of bacterial cultures. However, there is a misconception that exponential optical density growth is equivalent to steady-state population growth. Many cells comprise a culture and individuals can differ from one another. Hallmarks of steady-state population growth are stable frequency distributions of cellular properties over time, something total biomass growth alone cannot quantify. Using single-cell mass sensors paired with optical density measurements, we explore when steady-state population growth prevails in typical batch cultures. We find the average cell mass of Escherichia coli and Vibrio cyclitrophicus growing in several media increases by 0.5-1 orders of magnitude within a few hours of inoculation, and that time-invariant mass distributions are only achieved for short periods when cultures are inoculated with low initial biomass concentrations from overnight cultures. These species achieve an effective steady-state after approximately 2.5-4 total biomass doublings in rich media, which can be decomposed to 1 doubling of cell number and 1.5-3 doublings of average cell mass. We also show that typical batch cultures in rich media depart steady-state early in their growth curves at low cell and biomass concentrations. Achieving steady-state population growth in batch culture is a delicate balancing act, so we provide general guidance for commonly used rich media. Quantifying single-cell mass outside of steady-state population growth is an important first step toward understanding how microbes grow in their natural context, where fluctuations pervade at the scale of individuals. IMPORTANCE Microbiologists have watched clear liquid turn cloudy for over 100 years. While the cloudiness of a culture is proportional to its total biomass, growth rates from optical density measurements are challenging to interpret when cells change size. Many bacteria adjust their size at different steady-state growth rates, but also when shifting between starvation and growth. Optical density cannot disentangle how mass is distributed among cells. Here, we use single-cell mass measurements to demonstrate that a population of cells in batch culture achieves a stable mass distribution for only a short period of time. Achieving steady-state growth in rich medium requires low initial biomass concentrations and enough time for individual cell mass accumulation and cell number increase via cell division to balance out. Steady-state growth is important for reliable cell mass distributions and experimental reproducibility. We discuss how mass variation outside of steady-state can impact physiology, ecology, and evolution experiments." @default.
- W4386466575 created "2023-09-07" @default.
- W4386466575 creator A5011534979 @default.
- W4386466575 creator A5018975843 @default.
- W4386466575 creator A5026687026 @default.
- W4386466575 creator A5039740034 @default.
- W4386466575 creator A5046072599 @default.
- W4386466575 creator A5055611659 @default.
- W4386466575 creator A5088299545 @default.
- W4386466575 date "2023-09-06" @default.
- W4386466575 modified "2023-09-26" @default.
- W4386466575 title "Single-cell mass distributions reveal simple rules for achieving steady-state growth" @default.
- W4386466575 cites W1570124823 @default.
- W4386466575 cites W1781531090 @default.
- W4386466575 cites W1966062610 @default.
- W4386466575 cites W1967600116 @default.
- W4386466575 cites W1994782818 @default.
- W4386466575 cites W2001924625 @default.
- W4386466575 cites W2115419697 @default.
- W4386466575 cites W2125468800 @default.
- W4386466575 cites W2129239774 @default.
- W4386466575 cites W2131135346 @default.
- W4386466575 cites W2138210637 @default.
- W4386466575 cites W2139236375 @default.
- W4386466575 cites W2140646228 @default.
- W4386466575 cites W2161950511 @default.
- W4386466575 cites W2170010570 @default.
- W4386466575 cites W2177384541 @default.
- W4386466575 cites W2476934066 @default.
- W4386466575 cites W2485910554 @default.
- W4386466575 cites W2518601669 @default.
- W4386466575 cites W2560727713 @default.
- W4386466575 cites W2614283331 @default.
- W4386466575 cites W2748521462 @default.
- W4386466575 cites W2765970410 @default.
- W4386466575 cites W2774486220 @default.
- W4386466575 cites W2891314413 @default.
- W4386466575 cites W2952278313 @default.
- W4386466575 cites W2952570005 @default.
- W4386466575 cites W2962724228 @default.
- W4386466575 cites W2990427812 @default.
- W4386466575 cites W3024511005 @default.
- W4386466575 cites W3135017081 @default.
- W4386466575 cites W3138463799 @default.
- W4386466575 cites W3157292087 @default.
- W4386466575 cites W3162666452 @default.
- W4386466575 cites W3166240614 @default.
- W4386466575 cites W3187191703 @default.
- W4386466575 cites W4226086803 @default.
- W4386466575 cites W4313545888 @default.
- W4386466575 doi "https://doi.org/10.1128/mbio.01585-23" @default.
- W4386466575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37671861" @default.
- W4386466575 hasPublicationYear "2023" @default.
- W4386466575 type Work @default.
- W4386466575 citedByCount "0" @default.
- W4386466575 crossrefType "journal-article" @default.
- W4386466575 hasAuthorship W4386466575A5011534979 @default.
- W4386466575 hasAuthorship W4386466575A5018975843 @default.
- W4386466575 hasAuthorship W4386466575A5026687026 @default.
- W4386466575 hasAuthorship W4386466575A5039740034 @default.
- W4386466575 hasAuthorship W4386466575A5046072599 @default.
- W4386466575 hasAuthorship W4386466575A5055611659 @default.
- W4386466575 hasAuthorship W4386466575A5088299545 @default.
- W4386466575 hasBestOaLocation W43864665751 @default.
- W4386466575 hasConcept C115540264 @default.
- W4386466575 hasConcept C134306372 @default.
- W4386466575 hasConcept C144024400 @default.
- W4386466575 hasConcept C147789679 @default.
- W4386466575 hasConcept C1491633281 @default.
- W4386466575 hasConcept C149923435 @default.
- W4386466575 hasConcept C17741926 @default.
- W4386466575 hasConcept C185592680 @default.
- W4386466575 hasConcept C186060115 @default.
- W4386466575 hasConcept C18903297 @default.
- W4386466575 hasConcept C19165224 @default.
- W4386466575 hasConcept C2524010 @default.
- W4386466575 hasConcept C2778312390 @default.
- W4386466575 hasConcept C2908647359 @default.
- W4386466575 hasConcept C2994100351 @default.
- W4386466575 hasConcept C33923547 @default.
- W4386466575 hasConcept C48900799 @default.
- W4386466575 hasConcept C523546767 @default.
- W4386466575 hasConcept C54355233 @default.
- W4386466575 hasConcept C55493867 @default.
- W4386466575 hasConcept C75235859 @default.
- W4386466575 hasConcept C8171440 @default.
- W4386466575 hasConcept C86803240 @default.
- W4386466575 hasConceptScore W4386466575C115540264 @default.
- W4386466575 hasConceptScore W4386466575C134306372 @default.
- W4386466575 hasConceptScore W4386466575C144024400 @default.
- W4386466575 hasConceptScore W4386466575C147789679 @default.
- W4386466575 hasConceptScore W4386466575C1491633281 @default.
- W4386466575 hasConceptScore W4386466575C149923435 @default.
- W4386466575 hasConceptScore W4386466575C17741926 @default.
- W4386466575 hasConceptScore W4386466575C185592680 @default.
- W4386466575 hasConceptScore W4386466575C186060115 @default.
- W4386466575 hasConceptScore W4386466575C18903297 @default.
- W4386466575 hasConceptScore W4386466575C19165224 @default.
- W4386466575 hasConceptScore W4386466575C2524010 @default.
- W4386466575 hasConceptScore W4386466575C2778312390 @default.