Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386470331> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4386470331 endingPage "14" @default.
- W4386470331 startingPage "1" @default.
- W4386470331 abstract "Portfolio analysis is a crucial subject within modern finance. However, the classical Markowitz model, which was awarded the Nobel Prize in Economics in 1991, faces new challenges in contemporary financial environments. Specifically, it fails to consider transaction costs and cardinality constraints, which have become increasingly critical factors, particularly in the era of high-frequency trading. To address these limitations, this research is motivated by the successful application of machine learning tools in various engineering disciplines. In this work, three novel dynamic neural networks are proposed to tackle nonconvex portfolio optimization under the presence of transaction costs and cardinality constraints. The neural dynamics are intentionally designed to exploit the structural characteristics of the problem, and the proposed models are rigorously proven to achieve global convergence. To validate their effectiveness, experimental analysis is conducted using real stock market data of companies listed in the Dow Jones Index (DJI), covering the period from November 8, 2021 to November 8, 2022, encompassing an entire year. The results demonstrate the efficacy of the proposed methods. Notably, the proposed model achieves a substantial reduction in costs (which combines investment risk and reward) by as much as <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$56.71%$</tex-math> </inline-formula> compared with portfolios that are averagely selected." @default.
- W4386470331 created "2023-09-07" @default.
- W4386470331 creator A5001796838 @default.
- W4386470331 creator A5064740384 @default.
- W4386470331 date "2023-01-01" @default.
- W4386470331 modified "2023-09-27" @default.
- W4386470331 title "Neural Networks for Portfolio Analysis With Cardinality Constraints" @default.
- W4386470331 doi "https://doi.org/10.1109/tnnls.2023.3307192" @default.
- W4386470331 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37672371" @default.
- W4386470331 hasPublicationYear "2023" @default.
- W4386470331 type Work @default.
- W4386470331 citedByCount "0" @default.
- W4386470331 crossrefType "journal-article" @default.
- W4386470331 hasAuthorship W4386470331A5001796838 @default.
- W4386470331 hasAuthorship W4386470331A5064740384 @default.
- W4386470331 hasConcept C10138342 @default.
- W4386470331 hasConcept C106159729 @default.
- W4386470331 hasConcept C119857082 @default.
- W4386470331 hasConcept C124101348 @default.
- W4386470331 hasConcept C154945302 @default.
- W4386470331 hasConcept C162324750 @default.
- W4386470331 hasConcept C202655437 @default.
- W4386470331 hasConcept C2780821815 @default.
- W4386470331 hasConcept C33923547 @default.
- W4386470331 hasConcept C41008148 @default.
- W4386470331 hasConcept C42475967 @default.
- W4386470331 hasConcept C50644808 @default.
- W4386470331 hasConcept C84749600 @default.
- W4386470331 hasConcept C87117476 @default.
- W4386470331 hasConcept C98965940 @default.
- W4386470331 hasConceptScore W4386470331C10138342 @default.
- W4386470331 hasConceptScore W4386470331C106159729 @default.
- W4386470331 hasConceptScore W4386470331C119857082 @default.
- W4386470331 hasConceptScore W4386470331C124101348 @default.
- W4386470331 hasConceptScore W4386470331C154945302 @default.
- W4386470331 hasConceptScore W4386470331C162324750 @default.
- W4386470331 hasConceptScore W4386470331C202655437 @default.
- W4386470331 hasConceptScore W4386470331C2780821815 @default.
- W4386470331 hasConceptScore W4386470331C33923547 @default.
- W4386470331 hasConceptScore W4386470331C41008148 @default.
- W4386470331 hasConceptScore W4386470331C42475967 @default.
- W4386470331 hasConceptScore W4386470331C50644808 @default.
- W4386470331 hasConceptScore W4386470331C84749600 @default.
- W4386470331 hasConceptScore W4386470331C87117476 @default.
- W4386470331 hasConceptScore W4386470331C98965940 @default.
- W4386470331 hasLocation W43864703311 @default.
- W4386470331 hasLocation W43864703312 @default.
- W4386470331 hasOpenAccess W4386470331 @default.
- W4386470331 hasPrimaryLocation W43864703311 @default.
- W4386470331 hasRelatedWork W1534520553 @default.
- W4386470331 hasRelatedWork W1999169627 @default.
- W4386470331 hasRelatedWork W2109635221 @default.
- W4386470331 hasRelatedWork W2328009952 @default.
- W4386470331 hasRelatedWork W2364187944 @default.
- W4386470331 hasRelatedWork W2373679878 @default.
- W4386470331 hasRelatedWork W2386009934 @default.
- W4386470331 hasRelatedWork W2391063200 @default.
- W4386470331 hasRelatedWork W2504603602 @default.
- W4386470331 hasRelatedWork W3122850869 @default.
- W4386470331 isParatext "false" @default.
- W4386470331 isRetracted "false" @default.
- W4386470331 workType "article" @default.