Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386472912> ?p ?o ?g. }
- W4386472912 endingPage "98332" @default.
- W4386472912 startingPage "98315" @default.
- W4386472912 abstract "Diabetes affects roughly 537 million people in the world, and it is predicted to reach 783 million by 2045. Diabetic Foot Ulcer (DFU) is a major issue with diabetes that may lead to lower limb amputation. The rapid evolution of DFU demands immediate intervention to prevent the terrible consequences of amputation and related complications.This research introduces a novel approach utilizing deep neural networks and machine learning for the accurate classification of diabetic foot ulcer (DFU) images. The proposed method harnesses the cutting-edge capabilities of Convolutional Neural Networks (CNN) and Vision Image Transformers (ViT) within a Siamese Neural Network (SNN) Architecture. By employing similarity learning, the model efficiently categorizes DFU images into four distinct classes: None, Infection, Ischemia, or Both. The training process involves the use of the DFU2021 dataset, with all ethical clearances duly obtained. Notably, the model exhibits remarkable performance on both the validation and test data, indicating a significant breakthrough in the field of DFU disease image classification. The potential of this innovative model extends beyond classification; it holds promise as an integral component of a comprehensive detection tool and longitudinal treatment protocol validation for DFU disease." @default.
- W4386472912 created "2023-09-07" @default.
- W4386472912 creator A5001288245 @default.
- W4386472912 creator A5038162941 @default.
- W4386472912 creator A5039490884 @default.
- W4386472912 creator A5056782522 @default.
- W4386472912 creator A5068129153 @default.
- W4386472912 creator A5074301464 @default.
- W4386472912 creator A5092090426 @default.
- W4386472912 date "2023-01-01" @default.
- W4386472912 modified "2023-09-30" @default.
- W4386472912 title "DFU-SIAM a Novel Diabetic Foot Ulcer Classification with Deep Learning" @default.
- W4386472912 cites W2112796928 @default.
- W4386472912 cites W2125674401 @default.
- W4386472912 cites W2138621090 @default.
- W4386472912 cites W2171590421 @default.
- W4386472912 cites W2183341477 @default.
- W4386472912 cites W2186453442 @default.
- W4386472912 cites W2194775991 @default.
- W4386472912 cites W2465568626 @default.
- W4386472912 cites W2516809705 @default.
- W4386472912 cites W2549139847 @default.
- W4386472912 cites W2581082771 @default.
- W4386472912 cites W2598442119 @default.
- W4386472912 cites W2614221804 @default.
- W4386472912 cites W2752296309 @default.
- W4386472912 cites W2901743512 @default.
- W4386472912 cites W2905017682 @default.
- W4386472912 cites W2907620831 @default.
- W4386472912 cites W2949750920 @default.
- W4386472912 cites W2958089299 @default.
- W4386472912 cites W2962826307 @default.
- W4386472912 cites W2963800363 @default.
- W4386472912 cites W2964350391 @default.
- W4386472912 cites W2967307920 @default.
- W4386472912 cites W2971644666 @default.
- W4386472912 cites W3033511014 @default.
- W4386472912 cites W3045674654 @default.
- W4386472912 cites W3086590218 @default.
- W4386472912 cites W3096750812 @default.
- W4386472912 cites W3096831136 @default.
- W4386472912 cites W3097217077 @default.
- W4386472912 cites W3109650690 @default.
- W4386472912 cites W3188036383 @default.
- W4386472912 cites W3200152448 @default.
- W4386472912 cites W3216977444 @default.
- W4386472912 cites W4205284916 @default.
- W4386472912 cites W4205681714 @default.
- W4386472912 cites W4206605587 @default.
- W4386472912 cites W4210732551 @default.
- W4386472912 cites W4214592090 @default.
- W4386472912 cites W4220757422 @default.
- W4386472912 cites W4226296063 @default.
- W4386472912 cites W4280617223 @default.
- W4386472912 cites W4281483251 @default.
- W4386472912 cites W4286250234 @default.
- W4386472912 cites W4290716979 @default.
- W4386472912 cites W4292148537 @default.
- W4386472912 cites W4292543961 @default.
- W4386472912 cites W4293812279 @default.
- W4386472912 cites W4294559022 @default.
- W4386472912 cites W4298069763 @default.
- W4386472912 cites W4310856443 @default.
- W4386472912 cites W4313894869 @default.
- W4386472912 cites W4313901438 @default.
- W4386472912 cites W4317838147 @default.
- W4386472912 cites W4319780949 @default.
- W4386472912 cites W4352977741 @default.
- W4386472912 cites W4353079173 @default.
- W4386472912 cites W4378840507 @default.
- W4386472912 cites W4382359341 @default.
- W4386472912 cites W4383341708 @default.
- W4386472912 doi "https://doi.org/10.1109/access.2023.3312531" @default.
- W4386472912 hasPublicationYear "2023" @default.
- W4386472912 type Work @default.
- W4386472912 citedByCount "0" @default.
- W4386472912 crossrefType "journal-article" @default.
- W4386472912 hasAuthorship W4386472912A5001288245 @default.
- W4386472912 hasAuthorship W4386472912A5038162941 @default.
- W4386472912 hasAuthorship W4386472912A5039490884 @default.
- W4386472912 hasAuthorship W4386472912A5056782522 @default.
- W4386472912 hasAuthorship W4386472912A5068129153 @default.
- W4386472912 hasAuthorship W4386472912A5074301464 @default.
- W4386472912 hasAuthorship W4386472912A5092090426 @default.
- W4386472912 hasBestOaLocation W43864729121 @default.
- W4386472912 hasConcept C108583219 @default.
- W4386472912 hasConcept C119857082 @default.
- W4386472912 hasConcept C134018914 @default.
- W4386472912 hasConcept C141071460 @default.
- W4386472912 hasConcept C153180895 @default.
- W4386472912 hasConcept C154945302 @default.
- W4386472912 hasConcept C2776204877 @default.
- W4386472912 hasConcept C2777858829 @default.
- W4386472912 hasConcept C2778144972 @default.
- W4386472912 hasConcept C41008148 @default.
- W4386472912 hasConcept C50644808 @default.
- W4386472912 hasConcept C555293320 @default.
- W4386472912 hasConcept C71924100 @default.