Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386473129> ?p ?o ?g. }
- W4386473129 endingPage "97220" @default.
- W4386473129 startingPage "97207" @default.
- W4386473129 abstract "Precise and timely diagnosis of Covid-19 and pneumonia is crucial for effective treatment. However, the traditional RT-PCR method is time-consuming, costly, and prone to incorrect results. To address these limitations, a deep ensemble strategy is proposed as a promising alternative to provide more accurate and reliable outcomes. The strategy comprises three main stages: i) pre-processing, ii) salient feature extraction, and iii) training and classification. In the pre-processing step, the authors resize the images to the desired input shape. Data augmentation techniques, such as zooming, nearest full mode, rotation, and flipping, are employed to augment the dataset, thereby improving the training accuracy of the proposed approach. Additionally, the proposed method leverages the capabilities of VGG-16, DenseNet-201, and Efficient-B0 models using transfer-learning techniques to extract deep features from the images. These salient features are then passed through proposed fully connected layers and ensemble classifiers to predict the probability of the given classes. Extensive experiments were conducted on a chest X-ray image dataset, demonstrating that the proposed system outperforms contemporary techniques in terms of precision, recall, F1-score, and accuracy (acc). The proposed method obtained 97% of acc, while 96%, 95%, and 97% pre, rec, and F1-score respectively. In conclusion, this study presents a valuable contribution to medical image diagnosis using an AI-based deep ensemble strategy. The proposed approach offers a promising solution for accurate and efficient diagnosis of Covid-19 and pneumonia, assisting healthcare professionals in making informed decisions for optimal treatment outcomes." @default.
- W4386473129 created "2023-09-07" @default.
- W4386473129 creator A5008869714 @default.
- W4386473129 creator A5025137664 @default.
- W4386473129 creator A5025932305 @default.
- W4386473129 creator A5037582767 @default.
- W4386473129 creator A5074567338 @default.
- W4386473129 creator A5091202127 @default.
- W4386473129 date "2023-01-01" @default.
- W4386473129 modified "2023-09-30" @default.
- W4386473129 title "An Automated Chest X-Ray Image Analysis for Covid-19 and Pneumonia Diagnosis using Deep Ensemble Strategy" @default.
- W4386473129 cites W2117539524 @default.
- W4386473129 cites W2160212936 @default.
- W4386473129 cites W2183341477 @default.
- W4386473129 cites W2194775991 @default.
- W4386473129 cites W2531409750 @default.
- W4386473129 cites W2788633781 @default.
- W4386473129 cites W2963163009 @default.
- W4386473129 cites W2963446712 @default.
- W4386473129 cites W3000834295 @default.
- W4386473129 cites W3004280078 @default.
- W4386473129 cites W3010604545 @default.
- W4386473129 cites W3014648682 @default.
- W4386473129 cites W3015141576 @default.
- W4386473129 cites W3033606965 @default.
- W4386473129 cites W3035866979 @default.
- W4386473129 cites W3044223324 @default.
- W4386473129 cites W3088698860 @default.
- W4386473129 cites W3105081694 @default.
- W4386473129 cites W3128189270 @default.
- W4386473129 cites W3137180645 @default.
- W4386473129 cites W3139487216 @default.
- W4386473129 cites W3154884208 @default.
- W4386473129 cites W3160415184 @default.
- W4386473129 cites W3172430865 @default.
- W4386473129 cites W3179841826 @default.
- W4386473129 cites W3182393332 @default.
- W4386473129 cites W3189169109 @default.
- W4386473129 cites W3208151912 @default.
- W4386473129 cites W4206067856 @default.
- W4386473129 cites W4206434218 @default.
- W4386473129 cites W4206571954 @default.
- W4386473129 cites W4210510150 @default.
- W4386473129 cites W4210613509 @default.
- W4386473129 cites W4210786705 @default.
- W4386473129 cites W4213390837 @default.
- W4386473129 cites W4214656236 @default.
- W4386473129 cites W4285256347 @default.
- W4386473129 cites W4294243640 @default.
- W4386473129 cites W4313582012 @default.
- W4386473129 cites W4317716429 @default.
- W4386473129 cites W4318616076 @default.
- W4386473129 cites W4327597318 @default.
- W4386473129 cites W4352990793 @default.
- W4386473129 cites W4362513354 @default.
- W4386473129 cites W4362514452 @default.
- W4386473129 cites W4376116550 @default.
- W4386473129 cites W4385276803 @default.
- W4386473129 cites W4386257881 @default.
- W4386473129 doi "https://doi.org/10.1109/access.2023.3312533" @default.
- W4386473129 hasPublicationYear "2023" @default.
- W4386473129 type Work @default.
- W4386473129 citedByCount "0" @default.
- W4386473129 crossrefType "journal-article" @default.
- W4386473129 hasAuthorship W4386473129A5008869714 @default.
- W4386473129 hasAuthorship W4386473129A5025137664 @default.
- W4386473129 hasAuthorship W4386473129A5025932305 @default.
- W4386473129 hasAuthorship W4386473129A5037582767 @default.
- W4386473129 hasAuthorship W4386473129A5074567338 @default.
- W4386473129 hasAuthorship W4386473129A5091202127 @default.
- W4386473129 hasBestOaLocation W43864731291 @default.
- W4386473129 hasConcept C108583219 @default.
- W4386473129 hasConcept C119857082 @default.
- W4386473129 hasConcept C138885662 @default.
- W4386473129 hasConcept C150899416 @default.
- W4386473129 hasConcept C153180895 @default.
- W4386473129 hasConcept C154945302 @default.
- W4386473129 hasConcept C2776401178 @default.
- W4386473129 hasConcept C41008148 @default.
- W4386473129 hasConcept C41895202 @default.
- W4386473129 hasConcept C45942800 @default.
- W4386473129 hasConcept C52622490 @default.
- W4386473129 hasConcept C74050887 @default.
- W4386473129 hasConceptScore W4386473129C108583219 @default.
- W4386473129 hasConceptScore W4386473129C119857082 @default.
- W4386473129 hasConceptScore W4386473129C138885662 @default.
- W4386473129 hasConceptScore W4386473129C150899416 @default.
- W4386473129 hasConceptScore W4386473129C153180895 @default.
- W4386473129 hasConceptScore W4386473129C154945302 @default.
- W4386473129 hasConceptScore W4386473129C2776401178 @default.
- W4386473129 hasConceptScore W4386473129C41008148 @default.
- W4386473129 hasConceptScore W4386473129C41895202 @default.
- W4386473129 hasConceptScore W4386473129C45942800 @default.
- W4386473129 hasConceptScore W4386473129C52622490 @default.
- W4386473129 hasConceptScore W4386473129C74050887 @default.
- W4386473129 hasFunder F4320322006 @default.
- W4386473129 hasLocation W43864731291 @default.
- W4386473129 hasOpenAccess W4386473129 @default.