Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386473293> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386473293 endingPage "97106" @default.
- W4386473293 startingPage "97099" @default.
- W4386473293 abstract "The characteristics of hydrological data include nonconsistency and nonlinearity. The prediction accuracy can be improved through the combination of both the decomposition algorithm and the runoff model. Previous studies have typically focused on the combination of a single decomposition algorithm and model. These studies have compared the prediction accuracy before and after decomposition, ignoring the role of multiple decomposition algorithms and models. Considering the limitations of previous single combinations of decomposition algorithms and models, this study will explore the unique features of hydrological data by using a combination of five algorithms, including Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), TIME series decomposition (TIME), Variational Mode Decomposition (VMD), and Singular Spectrum Analysis (SSA). The study constructed models for Prophet, Long Short-Term Memory (LSTM), Multiple Regression (MLR), Random Forest Regression (RFR), Gradient Boosting Regression (GBR), and Support Vector Regression (SVR). Thirty combined prediction models were then developed and used to forecast medium and long-term runoff at Xianyang Station. To comprehensively evaluate the forecasted runoff results, multiple evaluation metrics were used. The prediction accuracy improved after using EMD and TIME decomposition, but the difference was insignificant, and TIME decomposition was the least effective. VMD, EEMD, and SSA, on the other hand, yielded higher data quality. The combined model achieved an NSE above 0.70, demonstrating good prediction results. Of the thirty combined models, the SSA-SVR and SSA-LSTM models were most accurate, with a verification NSE of 0.90. This study developed a comprehensive, reliable, and accurate combination prediction model by employing multiple decomposition algorithms and models. These findings provide a framework for characteristics-driven watershed runoff prediction and water resources scheduling." @default.
- W4386473293 created "2023-09-07" @default.
- W4386473293 creator A5010086820 @default.
- W4386473293 creator A5019286261 @default.
- W4386473293 creator A5035676995 @default.
- W4386473293 creator A5041112592 @default.
- W4386473293 date "2023-01-01" @default.
- W4386473293 modified "2023-09-29" @default.
- W4386473293 title "Comparative study of multi-combination models for medium - and long-term runoff prediction in Weihe River" @default.
- W4386473293 cites W1678356000 @default.
- W4386473293 cites W2000982976 @default.
- W4386473293 cites W2007221293 @default.
- W4386473293 cites W2025727209 @default.
- W4386473293 cites W2056132907 @default.
- W4386473293 cites W2063756720 @default.
- W4386473293 cites W2066024482 @default.
- W4386473293 cites W2120390927 @default.
- W4386473293 cites W2153635508 @default.
- W4386473293 cites W2536008880 @default.
- W4386473293 cites W2889514903 @default.
- W4386473293 cites W2954257334 @default.
- W4386473293 doi "https://doi.org/10.1109/access.2023.3312185" @default.
- W4386473293 hasPublicationYear "2023" @default.
- W4386473293 type Work @default.
- W4386473293 citedByCount "0" @default.
- W4386473293 crossrefType "journal-article" @default.
- W4386473293 hasAuthorship W4386473293A5010086820 @default.
- W4386473293 hasAuthorship W4386473293A5019286261 @default.
- W4386473293 hasAuthorship W4386473293A5035676995 @default.
- W4386473293 hasAuthorship W4386473293A5041112592 @default.
- W4386473293 hasBestOaLocation W43864732931 @default.
- W4386473293 hasConcept C105795698 @default.
- W4386473293 hasConcept C112633086 @default.
- W4386473293 hasConcept C11413529 @default.
- W4386473293 hasConcept C119857082 @default.
- W4386473293 hasConcept C12267149 @default.
- W4386473293 hasConcept C124101348 @default.
- W4386473293 hasConcept C124681953 @default.
- W4386473293 hasConcept C136272165 @default.
- W4386473293 hasConcept C151406439 @default.
- W4386473293 hasConcept C154945302 @default.
- W4386473293 hasConcept C169258074 @default.
- W4386473293 hasConcept C18903297 @default.
- W4386473293 hasConcept C22789450 @default.
- W4386473293 hasConcept C25570617 @default.
- W4386473293 hasConcept C33923547 @default.
- W4386473293 hasConcept C41008148 @default.
- W4386473293 hasConcept C45804977 @default.
- W4386473293 hasConcept C70153297 @default.
- W4386473293 hasConcept C83546350 @default.
- W4386473293 hasConcept C86803240 @default.
- W4386473293 hasConceptScore W4386473293C105795698 @default.
- W4386473293 hasConceptScore W4386473293C112633086 @default.
- W4386473293 hasConceptScore W4386473293C11413529 @default.
- W4386473293 hasConceptScore W4386473293C119857082 @default.
- W4386473293 hasConceptScore W4386473293C12267149 @default.
- W4386473293 hasConceptScore W4386473293C124101348 @default.
- W4386473293 hasConceptScore W4386473293C124681953 @default.
- W4386473293 hasConceptScore W4386473293C136272165 @default.
- W4386473293 hasConceptScore W4386473293C151406439 @default.
- W4386473293 hasConceptScore W4386473293C154945302 @default.
- W4386473293 hasConceptScore W4386473293C169258074 @default.
- W4386473293 hasConceptScore W4386473293C18903297 @default.
- W4386473293 hasConceptScore W4386473293C22789450 @default.
- W4386473293 hasConceptScore W4386473293C25570617 @default.
- W4386473293 hasConceptScore W4386473293C33923547 @default.
- W4386473293 hasConceptScore W4386473293C41008148 @default.
- W4386473293 hasConceptScore W4386473293C45804977 @default.
- W4386473293 hasConceptScore W4386473293C70153297 @default.
- W4386473293 hasConceptScore W4386473293C83546350 @default.
- W4386473293 hasConceptScore W4386473293C86803240 @default.
- W4386473293 hasFunder F4320335777 @default.
- W4386473293 hasLocation W43864732931 @default.
- W4386473293 hasOpenAccess W4386473293 @default.
- W4386473293 hasPrimaryLocation W43864732931 @default.
- W4386473293 hasRelatedWork W2911455822 @default.
- W4386473293 hasRelatedWork W3023244261 @default.
- W4386473293 hasRelatedWork W3166976141 @default.
- W4386473293 hasRelatedWork W3195168932 @default.
- W4386473293 hasRelatedWork W4281616679 @default.
- W4386473293 hasRelatedWork W4293525103 @default.
- W4386473293 hasRelatedWork W4308191010 @default.
- W4386473293 hasRelatedWork W4317600379 @default.
- W4386473293 hasRelatedWork W4318833575 @default.
- W4386473293 hasRelatedWork W4383535405 @default.
- W4386473293 hasVolume "11" @default.
- W4386473293 isParatext "false" @default.
- W4386473293 isRetracted "false" @default.
- W4386473293 workType "article" @default.