Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386474352> ?p ?o ?g. }
- W4386474352 endingPage "110710" @default.
- W4386474352 startingPage "110710" @default.
- W4386474352 abstract "Deep learning-based fault diagnosis models have been demonstrated to recognise machine health conditions from vibration data. However, most related studies have focused on lateral vibration data, and mostly neglected torsional vibration data. Yet, torsional vibration data can provide an advantage in diagnosing gear faults. Torsional vibration is typically less noisy than lateral vibration data as it can be measured directly from the rotating components. To this end, this study presents a large gear fault dataset with artificial faults of varying severity acquired from a downscaled thruster test rig operated at a vast range of rotating speeds. The test rig was equipped with multiple torque transducers, rotary encoders and piezoelectric accelerometers. The lateral and torsional vibration data acquired with these sensors were evaluated with three popular convolutional neural networks in extensive ablation studies. An interpretability analysis was conducted based on amplitude spectra and Grad-CAM visualisations. The results demonstrate that torsional vibration can be an effective source of data for gear fault diagnosis. For example, the models diagnose the most difficult gear conditions using only one torque transducer more accurately than using three accelerometers mounted on the gear box. Furthermore, the highest accuracy in each ablation study related to experiments with combined lateral and torsional vibration data. In addition, the interpretability analysis showed that the lower frequencies had relatively higher amplitudes in torsional vibration than in lateral vibration. The interpretability analysis also indicates that the models reached higher classification accuracies with torsional vibration data due to the lower dominating frequencies. Overall, this study highlights the potential benefits of using torsional vibration data for deep learning-based fault diagnosis of gears." @default.
- W4386474352 created "2023-09-07" @default.
- W4386474352 creator A5043183329 @default.
- W4386474352 creator A5043476439 @default.
- W4386474352 creator A5047564601 @default.
- W4386474352 creator A5048559601 @default.
- W4386474352 creator A5082076190 @default.
- W4386474352 date "2023-11-01" @default.
- W4386474352 modified "2023-09-27" @default.
- W4386474352 title "Comparing torsional and lateral vibration data for deep learning-based drive train gear diagnosis" @default.
- W4386474352 cites W1992139774 @default.
- W4386474352 cites W2078994304 @default.
- W4386474352 cites W2149300845 @default.
- W4386474352 cites W2219903032 @default.
- W4386474352 cites W2337825736 @default.
- W4386474352 cites W2461729787 @default.
- W4386474352 cites W2584994008 @default.
- W4386474352 cites W2616321591 @default.
- W4386474352 cites W2620691296 @default.
- W4386474352 cites W2744376841 @default.
- W4386474352 cites W2763220739 @default.
- W4386474352 cites W2765317657 @default.
- W4386474352 cites W2766819698 @default.
- W4386474352 cites W2791694051 @default.
- W4386474352 cites W2802357418 @default.
- W4386474352 cites W2810292802 @default.
- W4386474352 cites W2810916489 @default.
- W4386474352 cites W2896451001 @default.
- W4386474352 cites W2898375427 @default.
- W4386474352 cites W2898760173 @default.
- W4386474352 cites W2903917280 @default.
- W4386474352 cites W2907541186 @default.
- W4386474352 cites W2911725274 @default.
- W4386474352 cites W2915514405 @default.
- W4386474352 cites W2943439651 @default.
- W4386474352 cites W2944474187 @default.
- W4386474352 cites W2947477257 @default.
- W4386474352 cites W2962858109 @default.
- W4386474352 cites W2969930993 @default.
- W4386474352 cites W2990226288 @default.
- W4386474352 cites W2998506103 @default.
- W4386474352 cites W3007428942 @default.
- W4386474352 cites W3011766772 @default.
- W4386474352 cites W3039300052 @default.
- W4386474352 cites W3128738559 @default.
- W4386474352 cites W3165289590 @default.
- W4386474352 cites W3165802365 @default.
- W4386474352 cites W4200322140 @default.
- W4386474352 cites W4206166171 @default.
- W4386474352 cites W4214761052 @default.
- W4386474352 cites W4214831675 @default.
- W4386474352 cites W4224884326 @default.
- W4386474352 cites W4283724379 @default.
- W4386474352 doi "https://doi.org/10.1016/j.ymssp.2023.110710" @default.
- W4386474352 hasPublicationYear "2023" @default.
- W4386474352 type Work @default.
- W4386474352 citedByCount "0" @default.
- W4386474352 crossrefType "journal-article" @default.
- W4386474352 hasAuthorship W4386474352A5043183329 @default.
- W4386474352 hasAuthorship W4386474352A5043476439 @default.
- W4386474352 hasAuthorship W4386474352A5047564601 @default.
- W4386474352 hasAuthorship W4386474352A5048559601 @default.
- W4386474352 hasAuthorship W4386474352A5082076190 @default.
- W4386474352 hasBestOaLocation W43864743521 @default.
- W4386474352 hasConcept C111919701 @default.
- W4386474352 hasConcept C115903868 @default.
- W4386474352 hasConcept C121332964 @default.
- W4386474352 hasConcept C127313418 @default.
- W4386474352 hasConcept C127413603 @default.
- W4386474352 hasConcept C144171764 @default.
- W4386474352 hasConcept C154945302 @default.
- W4386474352 hasConcept C165205528 @default.
- W4386474352 hasConcept C16910744 @default.
- W4386474352 hasConcept C175551986 @default.
- W4386474352 hasConcept C198394728 @default.
- W4386474352 hasConcept C24890656 @default.
- W4386474352 hasConcept C2781067378 @default.
- W4386474352 hasConcept C41008148 @default.
- W4386474352 hasConcept C66938386 @default.
- W4386474352 hasConcept C87744240 @default.
- W4386474352 hasConcept C89805583 @default.
- W4386474352 hasConcept C97355855 @default.
- W4386474352 hasConceptScore W4386474352C111919701 @default.
- W4386474352 hasConceptScore W4386474352C115903868 @default.
- W4386474352 hasConceptScore W4386474352C121332964 @default.
- W4386474352 hasConceptScore W4386474352C127313418 @default.
- W4386474352 hasConceptScore W4386474352C127413603 @default.
- W4386474352 hasConceptScore W4386474352C144171764 @default.
- W4386474352 hasConceptScore W4386474352C154945302 @default.
- W4386474352 hasConceptScore W4386474352C165205528 @default.
- W4386474352 hasConceptScore W4386474352C16910744 @default.
- W4386474352 hasConceptScore W4386474352C175551986 @default.
- W4386474352 hasConceptScore W4386474352C198394728 @default.
- W4386474352 hasConceptScore W4386474352C24890656 @default.
- W4386474352 hasConceptScore W4386474352C2781067378 @default.
- W4386474352 hasConceptScore W4386474352C41008148 @default.
- W4386474352 hasConceptScore W4386474352C66938386 @default.
- W4386474352 hasConceptScore W4386474352C87744240 @default.