Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386474447> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4386474447 endingPage "199" @default.
- W4386474447 startingPage "169" @default.
- W4386474447 abstract "Sustainable manufacturing of machine parts lies in predicting and optimizing the machining parameters for the machining operations. The optimized parameters will produce sustainable products with reduced corrosion and fatigue problems because the roughness of the surface of the product will lead to the failure of the component or part during the production process. This investigation focuses on the prediction and optimization of the experimental data of surface roughness of AA8112 alloys obtained during the end-milling process with a biodegradable nano-lubricant. The study employed vegetable oil as the base cutting fluid (copra oil) and MWCNTs nanoparticles as an additive. This study prediction analysis was carried out with an artificial neural network (ANN) and quadratic rotatable central composite design (QRCCD). The results show that the ANN and QRCCD predicted the experimental data with 95.50% and 99.50%, respectively. Both prediction analyses’ error percentages are 5.5% from the ANN and 0.5% from the QRCCD. The QRCCD optimized parameters for the minimum surface roughness are spindle speed of 3366 rpm, 101 mm/min feed rate, 1 mm depth of cut, 20 mm length-of-cut, and 39.6° helix angle. These parameters achieved the minimum surface roughness of 1.16 μm, which is closely related to the optimized value from the experimental data. Therefore, the study in this chapter will recommend manufacturers employ the optimized machining parameters for product production." @default.
- W4386474447 created "2023-09-07" @default.
- W4386474447 creator A5032737621 @default.
- W4386474447 creator A5057227579 @default.
- W4386474447 date "2023-01-01" @default.
- W4386474447 modified "2023-09-27" @default.
- W4386474447 title "ANN and QRCCD Prediction of Surface Roughness Under Biodegradable Nano-lubricant" @default.
- W4386474447 cites W2617105262 @default.
- W4386474447 cites W2794268718 @default.
- W4386474447 cites W2913340792 @default.
- W4386474447 cites W2945159142 @default.
- W4386474447 cites W2969243590 @default.
- W4386474447 cites W2981161037 @default.
- W4386474447 cites W3021727993 @default.
- W4386474447 cites W3029862850 @default.
- W4386474447 cites W3033785644 @default.
- W4386474447 cites W3037339041 @default.
- W4386474447 cites W3119479460 @default.
- W4386474447 cites W3121568226 @default.
- W4386474447 cites W3138583169 @default.
- W4386474447 cites W3168582173 @default.
- W4386474447 cites W3185306557 @default.
- W4386474447 cites W3196443333 @default.
- W4386474447 cites W3209760437 @default.
- W4386474447 cites W4225268860 @default.
- W4386474447 doi "https://doi.org/10.1007/978-3-031-35455-7_9" @default.
- W4386474447 hasPublicationYear "2023" @default.
- W4386474447 type Work @default.
- W4386474447 citedByCount "0" @default.
- W4386474447 crossrefType "book-chapter" @default.
- W4386474447 hasAuthorship W4386474447A5032737621 @default.
- W4386474447 hasAuthorship W4386474447A5057227579 @default.
- W4386474447 hasConcept C107365816 @default.
- W4386474447 hasConcept C119857082 @default.
- W4386474447 hasConcept C127413603 @default.
- W4386474447 hasConcept C150077022 @default.
- W4386474447 hasConcept C154945302 @default.
- W4386474447 hasConcept C159985019 @default.
- W4386474447 hasConcept C191897082 @default.
- W4386474447 hasConcept C192562407 @default.
- W4386474447 hasConcept C199639397 @default.
- W4386474447 hasConcept C21880701 @default.
- W4386474447 hasConcept C2780357685 @default.
- W4386474447 hasConcept C2780874159 @default.
- W4386474447 hasConcept C41008148 @default.
- W4386474447 hasConcept C50644808 @default.
- W4386474447 hasConcept C523214423 @default.
- W4386474447 hasConcept C71039073 @default.
- W4386474447 hasConcept C78519656 @default.
- W4386474447 hasConcept C92397422 @default.
- W4386474447 hasConceptScore W4386474447C107365816 @default.
- W4386474447 hasConceptScore W4386474447C119857082 @default.
- W4386474447 hasConceptScore W4386474447C127413603 @default.
- W4386474447 hasConceptScore W4386474447C150077022 @default.
- W4386474447 hasConceptScore W4386474447C154945302 @default.
- W4386474447 hasConceptScore W4386474447C159985019 @default.
- W4386474447 hasConceptScore W4386474447C191897082 @default.
- W4386474447 hasConceptScore W4386474447C192562407 @default.
- W4386474447 hasConceptScore W4386474447C199639397 @default.
- W4386474447 hasConceptScore W4386474447C21880701 @default.
- W4386474447 hasConceptScore W4386474447C2780357685 @default.
- W4386474447 hasConceptScore W4386474447C2780874159 @default.
- W4386474447 hasConceptScore W4386474447C41008148 @default.
- W4386474447 hasConceptScore W4386474447C50644808 @default.
- W4386474447 hasConceptScore W4386474447C523214423 @default.
- W4386474447 hasConceptScore W4386474447C71039073 @default.
- W4386474447 hasConceptScore W4386474447C78519656 @default.
- W4386474447 hasConceptScore W4386474447C92397422 @default.
- W4386474447 hasLocation W43864744471 @default.
- W4386474447 hasOpenAccess W4386474447 @default.
- W4386474447 hasPrimaryLocation W43864744471 @default.
- W4386474447 hasRelatedWork W1983533189 @default.
- W4386474447 hasRelatedWork W2063395047 @default.
- W4386474447 hasRelatedWork W2366733157 @default.
- W4386474447 hasRelatedWork W2942325242 @default.
- W4386474447 hasRelatedWork W2974115021 @default.
- W4386474447 hasRelatedWork W2979288413 @default.
- W4386474447 hasRelatedWork W30142236 @default.
- W4386474447 hasRelatedWork W3063445905 @default.
- W4386474447 hasRelatedWork W3205693301 @default.
- W4386474447 hasRelatedWork W2346906994 @default.
- W4386474447 isParatext "false" @default.
- W4386474447 isRetracted "false" @default.
- W4386474447 workType "book-chapter" @default.