Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386474887> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4386474887 abstract "An accurate breast cancer classification utilizing Convolutional Neural Network (CNN) requires the best option of hyperparameter selection to create a robust and adaptive algorithm based on different datasets. Standard optimization algorithms are subjected to nondeterministic and restricted to integer-valued parameters that cause a restricted optimization process on a highly non-linear dataset such as mammogram images. In this study, hyperparameter tuning through two optimization methods, Genetic Algorithm optimization (GAO) and Bayesian optimization (BO), are compared based on the evaluation for breast mass classification of benign and malignant on a publicly available mammogram image of the INbreast dataset. The best model shows an increase in testing accuracy at 90.05% and balancing of sensitivity to the specificity of 0.803 to 0.9481, improving its true positive rate when optimized using the GAO method. The optimization process allows for the combination of genetic mutations of the parent and fusion improves the creation of a population for the best-trained network." @default.
- W4386474887 created "2023-09-07" @default.
- W4386474887 creator A5005664778 @default.
- W4386474887 creator A5022903950 @default.
- W4386474887 creator A5027356897 @default.
- W4386474887 creator A5028702508 @default.
- W4386474887 creator A5029900048 @default.
- W4386474887 creator A5063461428 @default.
- W4386474887 creator A5078773274 @default.
- W4386474887 date "2023-08-25" @default.
- W4386474887 modified "2023-09-27" @default.
- W4386474887 title "A Comparative Performance of Genetic Algorithm and Bayesian Optimization for Hyperparameter Tuning for Mammogram Classification" @default.
- W4386474887 cites W1985842955 @default.
- W4386474887 cites W2082311289 @default.
- W4386474887 cites W2192203593 @default.
- W4386474887 cites W2818275232 @default.
- W4386474887 cites W2995942064 @default.
- W4386474887 cites W3023402959 @default.
- W4386474887 cites W304373761 @default.
- W4386474887 cites W3096265120 @default.
- W4386474887 cites W3128646645 @default.
- W4386474887 cites W3146507087 @default.
- W4386474887 cites W3199262103 @default.
- W4386474887 cites W4213083527 @default.
- W4386474887 cites W4213353729 @default.
- W4386474887 cites W4223467452 @default.
- W4386474887 cites W4308415759 @default.
- W4386474887 cites W4313549069 @default.
- W4386474887 cites W4317906739 @default.
- W4386474887 cites W4322505700 @default.
- W4386474887 doi "https://doi.org/10.1109/iccsce58721.2023.10237178" @default.
- W4386474887 hasPublicationYear "2023" @default.
- W4386474887 type Work @default.
- W4386474887 citedByCount "0" @default.
- W4386474887 crossrefType "proceedings-article" @default.
- W4386474887 hasAuthorship W4386474887A5005664778 @default.
- W4386474887 hasAuthorship W4386474887A5022903950 @default.
- W4386474887 hasAuthorship W4386474887A5027356897 @default.
- W4386474887 hasAuthorship W4386474887A5028702508 @default.
- W4386474887 hasAuthorship W4386474887A5029900048 @default.
- W4386474887 hasAuthorship W4386474887A5063461428 @default.
- W4386474887 hasAuthorship W4386474887A5078773274 @default.
- W4386474887 hasConcept C10485038 @default.
- W4386474887 hasConcept C11413529 @default.
- W4386474887 hasConcept C119857082 @default.
- W4386474887 hasConcept C12267149 @default.
- W4386474887 hasConcept C127413603 @default.
- W4386474887 hasConcept C153180895 @default.
- W4386474887 hasConcept C154945302 @default.
- W4386474887 hasConcept C21200559 @default.
- W4386474887 hasConcept C24326235 @default.
- W4386474887 hasConcept C2778049539 @default.
- W4386474887 hasConcept C41008148 @default.
- W4386474887 hasConcept C50644808 @default.
- W4386474887 hasConcept C81363708 @default.
- W4386474887 hasConcept C8642999 @default.
- W4386474887 hasConcept C8880873 @default.
- W4386474887 hasConceptScore W4386474887C10485038 @default.
- W4386474887 hasConceptScore W4386474887C11413529 @default.
- W4386474887 hasConceptScore W4386474887C119857082 @default.
- W4386474887 hasConceptScore W4386474887C12267149 @default.
- W4386474887 hasConceptScore W4386474887C127413603 @default.
- W4386474887 hasConceptScore W4386474887C153180895 @default.
- W4386474887 hasConceptScore W4386474887C154945302 @default.
- W4386474887 hasConceptScore W4386474887C21200559 @default.
- W4386474887 hasConceptScore W4386474887C24326235 @default.
- W4386474887 hasConceptScore W4386474887C2778049539 @default.
- W4386474887 hasConceptScore W4386474887C41008148 @default.
- W4386474887 hasConceptScore W4386474887C50644808 @default.
- W4386474887 hasConceptScore W4386474887C81363708 @default.
- W4386474887 hasConceptScore W4386474887C8642999 @default.
- W4386474887 hasConceptScore W4386474887C8880873 @default.
- W4386474887 hasFunder F4320321147 @default.
- W4386474887 hasLocation W43864748871 @default.
- W4386474887 hasOpenAccess W4386474887 @default.
- W4386474887 hasPrimaryLocation W43864748871 @default.
- W4386474887 hasRelatedWork W2200000192 @default.
- W4386474887 hasRelatedWork W2405673391 @default.
- W4386474887 hasRelatedWork W2782093256 @default.
- W4386474887 hasRelatedWork W2919302225 @default.
- W4386474887 hasRelatedWork W2938870056 @default.
- W4386474887 hasRelatedWork W3011618419 @default.
- W4386474887 hasRelatedWork W3097663225 @default.
- W4386474887 hasRelatedWork W3199608561 @default.
- W4386474887 hasRelatedWork W4287818966 @default.
- W4386474887 hasRelatedWork W4323894855 @default.
- W4386474887 isParatext "false" @default.
- W4386474887 isRetracted "false" @default.
- W4386474887 workType "article" @default.