Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386475049> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4386475049 abstract "Cell segmentation is a challenging task due to the imaging modality employed, cell’s deformable construct and imaging settings. The use of Deep Neural Networks (DNN) has facilitated excellent results in segmentation when compared to traditional image segmentation techniques as it has shown significant improvement in several metrics including accuracy, efficiency, precision etc. From the end user perspective, a good trained model is one that has a high accuracy, is portable, and has a short execution time. The size of the trained model is essential in the age of tiny machine learning (TinyML) and several techniques are developed. Among the techniques that enable a good performance while operating with small size of the input data and small size of output data we can list data augmentation, pruning and quantization. Here we report results of cell segmentation while using pruning and segmentation." @default.
- W4386475049 created "2023-09-07" @default.
- W4386475049 creator A5006097223 @default.
- W4386475049 creator A5006650105 @default.
- W4386475049 creator A5059029223 @default.
- W4386475049 creator A5082668134 @default.
- W4386475049 creator A5092762726 @default.
- W4386475049 creator A5092762727 @default.
- W4386475049 date "2023-08-14" @default.
- W4386475049 modified "2023-09-27" @default.
- W4386475049 title "Evaluation of Cell Segmentation Using Pruning and Quantization" @default.
- W4386475049 cites W1536680647 @default.
- W4386475049 cites W2614209102 @default.
- W4386475049 cites W2900570535 @default.
- W4386475049 cites W2922057556 @default.
- W4386475049 cites W2949817882 @default.
- W4386475049 cites W2980998394 @default.
- W4386475049 cites W3012084174 @default.
- W4386475049 cites W3094071141 @default.
- W4386475049 cites W3094416569 @default.
- W4386475049 cites W3099319035 @default.
- W4386475049 cites W3115517135 @default.
- W4386475049 cites W3177008705 @default.
- W4386475049 cites W4225165925 @default.
- W4386475049 doi "https://doi.org/10.1109/iccece59400.2023.10238641" @default.
- W4386475049 hasPublicationYear "2023" @default.
- W4386475049 type Work @default.
- W4386475049 citedByCount "0" @default.
- W4386475049 crossrefType "proceedings-article" @default.
- W4386475049 hasAuthorship W4386475049A5006097223 @default.
- W4386475049 hasAuthorship W4386475049A5006650105 @default.
- W4386475049 hasAuthorship W4386475049A5059029223 @default.
- W4386475049 hasAuthorship W4386475049A5082668134 @default.
- W4386475049 hasAuthorship W4386475049A5092762726 @default.
- W4386475049 hasAuthorship W4386475049A5092762727 @default.
- W4386475049 hasConcept C108010975 @default.
- W4386475049 hasConcept C124504099 @default.
- W4386475049 hasConcept C153180895 @default.
- W4386475049 hasConcept C154945302 @default.
- W4386475049 hasConcept C25694479 @default.
- W4386475049 hasConcept C28855332 @default.
- W4386475049 hasConcept C31972630 @default.
- W4386475049 hasConcept C41008148 @default.
- W4386475049 hasConcept C50644808 @default.
- W4386475049 hasConcept C6557445 @default.
- W4386475049 hasConcept C65885262 @default.
- W4386475049 hasConcept C86803240 @default.
- W4386475049 hasConcept C89600930 @default.
- W4386475049 hasConceptScore W4386475049C108010975 @default.
- W4386475049 hasConceptScore W4386475049C124504099 @default.
- W4386475049 hasConceptScore W4386475049C153180895 @default.
- W4386475049 hasConceptScore W4386475049C154945302 @default.
- W4386475049 hasConceptScore W4386475049C25694479 @default.
- W4386475049 hasConceptScore W4386475049C28855332 @default.
- W4386475049 hasConceptScore W4386475049C31972630 @default.
- W4386475049 hasConceptScore W4386475049C41008148 @default.
- W4386475049 hasConceptScore W4386475049C50644808 @default.
- W4386475049 hasConceptScore W4386475049C6557445 @default.
- W4386475049 hasConceptScore W4386475049C65885262 @default.
- W4386475049 hasConceptScore W4386475049C86803240 @default.
- W4386475049 hasConceptScore W4386475049C89600930 @default.
- W4386475049 hasLocation W43864750491 @default.
- W4386475049 hasOpenAccess W4386475049 @default.
- W4386475049 hasPrimaryLocation W43864750491 @default.
- W4386475049 hasRelatedWork W134976887 @default.
- W4386475049 hasRelatedWork W1669643531 @default.
- W4386475049 hasRelatedWork W1982826852 @default.
- W4386475049 hasRelatedWork W2021143974 @default.
- W4386475049 hasRelatedWork W2274529912 @default.
- W4386475049 hasRelatedWork W2384989255 @default.
- W4386475049 hasRelatedWork W2517104666 @default.
- W4386475049 hasRelatedWork W2549936415 @default.
- W4386475049 hasRelatedWork W2566648451 @default.
- W4386475049 hasRelatedWork W1967061043 @default.
- W4386475049 isParatext "false" @default.
- W4386475049 isRetracted "false" @default.
- W4386475049 workType "article" @default.