Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386475115> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386475115 abstract "We consider a dynamic capillarity equation with stochastic forcing on a compact Riemannian manifold <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper M comma g right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(M,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: <disp-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis u Subscript epsilon comma delta Baseline minus delta normal upper Delta u Subscript epsilon comma delta Baseline right-parenthesis plus d i v German f Subscript epsilon Baseline left-parenthesis bold x comma u Subscript epsilon comma delta Baseline right-parenthesis d t equals epsilon normal upper Delta u Subscript epsilon comma delta Baseline d t plus normal upper Phi left-parenthesis bold x comma u Subscript epsilon comma delta Baseline right-parenthesis d upper W Subscript t Baseline comma> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>δ<!-- δ --></mml:mi> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>v</mml:mi> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>f</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=thinmathspace /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mspace width=thinmathspace /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=thinmathspace /> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>begin{equation*} d left (u_{varepsilon ,delta } -delta Delta u_{varepsilon ,delta }right ) +divmathfrak {f}_{varepsilon }(mathbf {x}, u_{varepsilon ,delta }), dt =varepsilon Delta u_{varepsilon ,delta }, dt + Phi (mathbf {x}, u_{varepsilon ,delta }), dW_t, end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German f Subscript epsilon> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>f</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ε<!-- ε --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>mathfrak {f}_{varepsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of smooth vector fields converging in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p Baseline left-parenthesis upper M times double-struck upper R right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^p(Mtimes mathbb {R})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than 2> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon down-arrow 0> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>↓<!-- ↓ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>varepsilon downarrow 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> towards a vector field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German f element-of upper L Superscript p Baseline left-parenthesis upper M semicolon upper C Superscript 1 Baseline left-parenthesis double-struck upper R right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>f</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {f}in L^p(M;C^1(mathbb {R}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W Subscript t> <mml:semantics> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>W_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Wiener process defined on a filtered probability space. First, for fixed values of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=application/x-tex>varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=delta> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=application/x-tex>delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we establish the existence and uniqueness of weak solutions to the Cauchy problem for the above-stated equation. Assuming that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German f> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>f</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is non-degenerate and that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=application/x-tex>varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=delta> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding=application/x-tex>delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tend to zero with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=delta slash epsilon squared> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>ε<!-- ε --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>delta /varepsilon ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounded, we show that there exists a subsequence of solutions that strongly converges in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Subscript omega comma t comma bold x Superscript 1> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>L^1_{omega ,t,mathbf {x}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a martingale solution of the following stochastic conservation law with discontinuous flux: <disp-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d u plus d i v German f left-parenthesis bold x comma u right-parenthesis d t equals normal upper Phi left-parenthesis u right-parenthesis d upper W Subscript t Baseline period> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>v</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>f</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>x</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=thinmathspace /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=thinmathspace /> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>begin{equation*} d u +divmathfrak {f}(mathbf {x}, u),dt =Phi (u), dW_t. end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> The proofs make use of Galerkin approximations, kinetic formulations as well as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-measures and new velocity averaging results for stochastic continuity equations. The analysis relies on the use of a.s. representations of random variables in some particular quasi-Polish spaces. The convergence framework developed here can be applied to other singular limit problems for stochastic conservation laws." @default.
- W4386475115 created "2023-09-07" @default.
- W4386475115 creator A5034008502 @default.
- W4386475115 creator A5054233429 @default.
- W4386475115 creator A5091121013 @default.
- W4386475115 date "2023-10-11" @default.
- W4386475115 modified "2023-10-18" @default.
- W4386475115 title "A dynamic capillarity equation with stochastic forcing on manifolds: A singular limit problem" @default.
- W4386475115 cites W1526289491 @default.
- W4386475115 cites W1542004730 @default.
- W4386475115 cites W1545370368 @default.
- W4386475115 cites W1964393596 @default.
- W4386475115 cites W1976350329 @default.
- W4386475115 cites W1977576784 @default.
- W4386475115 cites W1985105993 @default.
- W4386475115 cites W1989121669 @default.
- W4386475115 cites W1994789545 @default.
- W4386475115 cites W2027017530 @default.
- W4386475115 cites W2028784283 @default.
- W4386475115 cites W2031010232 @default.
- W4386475115 cites W2035842003 @default.
- W4386475115 cites W2040489165 @default.
- W4386475115 cites W2041324809 @default.
- W4386475115 cites W2055424061 @default.
- W4386475115 cites W2063727277 @default.
- W4386475115 cites W2067602094 @default.
- W4386475115 cites W2071817764 @default.
- W4386475115 cites W2073078790 @default.
- W4386475115 cites W2076809967 @default.
- W4386475115 cites W2090812644 @default.
- W4386475115 cites W2108824484 @default.
- W4386475115 cites W2130848573 @default.
- W4386475115 cites W2140946313 @default.
- W4386475115 cites W2158375400 @default.
- W4386475115 cites W2246639570 @default.
- W4386475115 cites W2338895534 @default.
- W4386475115 cites W2792839858 @default.
- W4386475115 cites W2809903515 @default.
- W4386475115 cites W2962975680 @default.
- W4386475115 cites W2963017571 @default.
- W4386475115 cites W2963104825 @default.
- W4386475115 cites W2963396897 @default.
- W4386475115 cites W2964247140 @default.
- W4386475115 cites W2964307110 @default.
- W4386475115 cites W2981830133 @default.
- W4386475115 cites W3102306170 @default.
- W4386475115 cites W3104807423 @default.
- W4386475115 cites W3109079432 @default.
- W4386475115 cites W4230782803 @default.
- W4386475115 cites W4238313514 @default.
- W4386475115 cites W4241281973 @default.
- W4386475115 cites W4293106097 @default.
- W4386475115 cites W4293203252 @default.
- W4386475115 cites W594814648 @default.
- W4386475115 doi "https://doi.org/10.1090/tran/9050" @default.
- W4386475115 hasPublicationYear "2023" @default.
- W4386475115 type Work @default.
- W4386475115 citedByCount "0" @default.
- W4386475115 crossrefType "journal-article" @default.
- W4386475115 hasAuthorship W4386475115A5034008502 @default.
- W4386475115 hasAuthorship W4386475115A5054233429 @default.
- W4386475115 hasAuthorship W4386475115A5091121013 @default.
- W4386475115 hasConcept C11413529 @default.
- W4386475115 hasConcept C154945302 @default.
- W4386475115 hasConcept C33923547 @default.
- W4386475115 hasConcept C41008148 @default.
- W4386475115 hasConceptScore W4386475115C11413529 @default.
- W4386475115 hasConceptScore W4386475115C154945302 @default.
- W4386475115 hasConceptScore W4386475115C33923547 @default.
- W4386475115 hasConceptScore W4386475115C41008148 @default.
- W4386475115 hasFunder F4320321181 @default.
- W4386475115 hasLocation W43864751151 @default.
- W4386475115 hasOpenAccess W4386475115 @default.
- W4386475115 hasPrimaryLocation W43864751151 @default.
- W4386475115 hasRelatedWork W2051487156 @default.
- W4386475115 hasRelatedWork W2052122378 @default.
- W4386475115 hasRelatedWork W2053286651 @default.
- W4386475115 hasRelatedWork W2073681303 @default.
- W4386475115 hasRelatedWork W2317200988 @default.
- W4386475115 hasRelatedWork W2544423928 @default.
- W4386475115 hasRelatedWork W2947381795 @default.
- W4386475115 hasRelatedWork W2181413294 @default.
- W4386475115 hasRelatedWork W2181743346 @default.
- W4386475115 hasRelatedWork W2187401768 @default.
- W4386475115 isParatext "false" @default.
- W4386475115 isRetracted "false" @default.
- W4386475115 workType "article" @default.