Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386475504> ?p ?o ?g. }
- W4386475504 endingPage "101348" @default.
- W4386475504 startingPage "101348" @default.
- W4386475504 abstract "The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistry-based drugs including high specificity, strong tumor penetration capacity, and low toxicity level for normal cells. Due to the rise of experimentally verified bioactive peptides, several in silico approaches became imperative for the investigation of the characteristics of ACPs. In this paper, we proposed a new machine learning tool named iACP-RF that uses a combination of several sequence-based features and an ensemble of three heterogeneously trained Random Forest classifiers to accurately predict anticancer peptides. Experimental results show that our proposed model achieves an accuracy of 75.9% which outperforms other state-of-the-art methods by a significant margin. We also achieve 0.52, 75.6%, and 76.2% in terms of Matthews Correlation Coefficient (MCC), Sensitivity, and Specificity, respectively. iACP-RF as a standalone tool and its source code are publicly available at: https://github.com/MLBC-lab/iACP-RF." @default.
- W4386475504 created "2023-09-07" @default.
- W4386475504 creator A5011813122 @default.
- W4386475504 creator A5019852514 @default.
- W4386475504 creator A5025400322 @default.
- W4386475504 creator A5053838727 @default.
- W4386475504 creator A5067504579 @default.
- W4386475504 creator A5075682344 @default.
- W4386475504 creator A5078963401 @default.
- W4386475504 date "2023-01-01" @default.
- W4386475504 modified "2023-10-09" @default.
- W4386475504 title "Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers" @default.
- W4386475504 cites W1969513285 @default.
- W4386475504 cites W1975348027 @default.
- W4386475504 cites W1979291608 @default.
- W4386475504 cites W1995757481 @default.
- W4386475504 cites W1996202672 @default.
- W4386475504 cites W2001532006 @default.
- W4386475504 cites W2002745879 @default.
- W4386475504 cites W2026679656 @default.
- W4386475504 cites W2049437879 @default.
- W4386475504 cites W2054639368 @default.
- W4386475504 cites W2060843884 @default.
- W4386475504 cites W2074196504 @default.
- W4386475504 cites W2083885137 @default.
- W4386475504 cites W2088877201 @default.
- W4386475504 cites W2098740506 @default.
- W4386475504 cites W2100621506 @default.
- W4386475504 cites W2118911320 @default.
- W4386475504 cites W2139709150 @default.
- W4386475504 cites W2153099927 @default.
- W4386475504 cites W2153778907 @default.
- W4386475504 cites W2168639488 @default.
- W4386475504 cites W2220780917 @default.
- W4386475504 cites W2340970647 @default.
- W4386475504 cites W2509916386 @default.
- W4386475504 cites W2552080741 @default.
- W4386475504 cites W2591017015 @default.
- W4386475504 cites W2598922467 @default.
- W4386475504 cites W2603655232 @default.
- W4386475504 cites W2625609557 @default.
- W4386475504 cites W2739980134 @default.
- W4386475504 cites W2747758005 @default.
- W4386475504 cites W2793278326 @default.
- W4386475504 cites W2806146459 @default.
- W4386475504 cites W2891164245 @default.
- W4386475504 cites W2911964244 @default.
- W4386475504 cites W2921372942 @default.
- W4386475504 cites W2936599975 @default.
- W4386475504 cites W2943935116 @default.
- W4386475504 cites W2945375732 @default.
- W4386475504 cites W2971874382 @default.
- W4386475504 cites W2987660980 @default.
- W4386475504 cites W2994622524 @default.
- W4386475504 cites W3026323285 @default.
- W4386475504 cites W3035907790 @default.
- W4386475504 cites W3041538267 @default.
- W4386475504 cites W3043293280 @default.
- W4386475504 cites W3082620742 @default.
- W4386475504 cites W3127712659 @default.
- W4386475504 cites W3159609049 @default.
- W4386475504 cites W3171375650 @default.
- W4386475504 cites W3204644976 @default.
- W4386475504 cites W3214729651 @default.
- W4386475504 cites W4214491099 @default.
- W4386475504 cites W4281480673 @default.
- W4386475504 cites W4281841978 @default.
- W4386475504 cites W4284898001 @default.
- W4386475504 cites W4284973298 @default.
- W4386475504 doi "https://doi.org/10.1016/j.imu.2023.101348" @default.
- W4386475504 hasPublicationYear "2023" @default.
- W4386475504 type Work @default.
- W4386475504 citedByCount "0" @default.
- W4386475504 crossrefType "journal-article" @default.
- W4386475504 hasAuthorship W4386475504A5011813122 @default.
- W4386475504 hasAuthorship W4386475504A5019852514 @default.
- W4386475504 hasAuthorship W4386475504A5025400322 @default.
- W4386475504 hasAuthorship W4386475504A5053838727 @default.
- W4386475504 hasAuthorship W4386475504A5067504579 @default.
- W4386475504 hasAuthorship W4386475504A5075682344 @default.
- W4386475504 hasAuthorship W4386475504A5078963401 @default.
- W4386475504 hasBestOaLocation W43864755041 @default.
- W4386475504 hasConcept C104317684 @default.
- W4386475504 hasConcept C119857082 @default.
- W4386475504 hasConcept C119898033 @default.
- W4386475504 hasConcept C12267149 @default.
- W4386475504 hasConcept C154945302 @default.
- W4386475504 hasConcept C164085508 @default.
- W4386475504 hasConcept C169258074 @default.
- W4386475504 hasConcept C185592680 @default.
- W4386475504 hasConcept C2775905019 @default.
- W4386475504 hasConcept C41008148 @default.
- W4386475504 hasConcept C45942800 @default.
- W4386475504 hasConcept C55493867 @default.
- W4386475504 hasConceptScore W4386475504C104317684 @default.
- W4386475504 hasConceptScore W4386475504C119857082 @default.
- W4386475504 hasConceptScore W4386475504C119898033 @default.
- W4386475504 hasConceptScore W4386475504C12267149 @default.