Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386475652> ?p ?o ?g. }
- W4386475652 endingPage "121431" @default.
- W4386475652 startingPage "121431" @default.
- W4386475652 abstract "With a recently defined AutoGCOP framework, the design of local search algorithms has been defined as the composition of elementary algorithmic components. The effective compositions of the best algorithms thus retain useful knowledge of effective algorithm design. This paper investigates machine learning to learn and extract useful knowledge in effective algorithmic compositions. The process of forecasting algorithmic components in the design of effective local search algorithms is defined as a sequence classification task, and solved by a long short-term memory (LSTM) neural network to systematically analyse algorithmic compositions. Compared with other learning models, the results reveal the superior prediction performance of the proposed LSTM. Further analysis identifies some key features of algorithmic compositions and confirms their effectiveness for improving the prediction, thus supporting effective automated algorithm design." @default.
- W4386475652 created "2023-09-07" @default.
- W4386475652 creator A5063920690 @default.
- W4386475652 creator A5065651256 @default.
- W4386475652 date "2024-03-01" @default.
- W4386475652 modified "2023-09-30" @default.
- W4386475652 title "Automated design of local search algorithms: Predicting algorithmic components with LSTM" @default.
- W4386475652 cites W1536647479 @default.
- W4386475652 cites W1602492977 @default.
- W4386475652 cites W1766594731 @default.
- W4386475652 cites W1981029154 @default.
- W4386475652 cites W1981976602 @default.
- W4386475652 cites W1990748933 @default.
- W4386475652 cites W1992961512 @default.
- W4386475652 cites W1993220166 @default.
- W4386475652 cites W1997102766 @default.
- W4386475652 cites W2008146930 @default.
- W4386475652 cites W2008647976 @default.
- W4386475652 cites W2025769637 @default.
- W4386475652 cites W2032617530 @default.
- W4386475652 cites W2035874923 @default.
- W4386475652 cites W2056956492 @default.
- W4386475652 cites W2057457236 @default.
- W4386475652 cites W2064675550 @default.
- W4386475652 cites W2079454949 @default.
- W4386475652 cites W2087311205 @default.
- W4386475652 cites W2091085232 @default.
- W4386475652 cites W2096305430 @default.
- W4386475652 cites W2126148517 @default.
- W4386475652 cites W2140494408 @default.
- W4386475652 cites W2148143831 @default.
- W4386475652 cites W2164330572 @default.
- W4386475652 cites W2165207629 @default.
- W4386475652 cites W2185085875 @default.
- W4386475652 cites W2411835395 @default.
- W4386475652 cites W2562319768 @default.
- W4386475652 cites W2580414719 @default.
- W4386475652 cites W2615708612 @default.
- W4386475652 cites W2753468256 @default.
- W4386475652 cites W2786577118 @default.
- W4386475652 cites W2798000029 @default.
- W4386475652 cites W2801716390 @default.
- W4386475652 cites W2903754058 @default.
- W4386475652 cites W2909673565 @default.
- W4386475652 cites W2911964244 @default.
- W4386475652 cites W2990495794 @default.
- W4386475652 cites W3015862467 @default.
- W4386475652 cites W3028860567 @default.
- W4386475652 cites W3102480713 @default.
- W4386475652 cites W3105625590 @default.
- W4386475652 cites W3159134414 @default.
- W4386475652 cites W3186437454 @default.
- W4386475652 cites W3209079480 @default.
- W4386475652 cites W3213213154 @default.
- W4386475652 cites W41322358 @default.
- W4386475652 cites W4313254004 @default.
- W4386475652 doi "https://doi.org/10.1016/j.eswa.2023.121431" @default.
- W4386475652 hasPublicationYear "2024" @default.
- W4386475652 type Work @default.
- W4386475652 citedByCount "0" @default.
- W4386475652 crossrefType "journal-article" @default.
- W4386475652 hasAuthorship W4386475652A5063920690 @default.
- W4386475652 hasAuthorship W4386475652A5065651256 @default.
- W4386475652 hasConcept C111919701 @default.
- W4386475652 hasConcept C11413529 @default.
- W4386475652 hasConcept C119857082 @default.
- W4386475652 hasConcept C154945302 @default.
- W4386475652 hasConcept C162324750 @default.
- W4386475652 hasConcept C187736073 @default.
- W4386475652 hasConcept C26517878 @default.
- W4386475652 hasConcept C2778112365 @default.
- W4386475652 hasConcept C2780451532 @default.
- W4386475652 hasConcept C38652104 @default.
- W4386475652 hasConcept C41008148 @default.
- W4386475652 hasConcept C50644808 @default.
- W4386475652 hasConcept C54355233 @default.
- W4386475652 hasConcept C86803240 @default.
- W4386475652 hasConcept C98045186 @default.
- W4386475652 hasConceptScore W4386475652C111919701 @default.
- W4386475652 hasConceptScore W4386475652C11413529 @default.
- W4386475652 hasConceptScore W4386475652C119857082 @default.
- W4386475652 hasConceptScore W4386475652C154945302 @default.
- W4386475652 hasConceptScore W4386475652C162324750 @default.
- W4386475652 hasConceptScore W4386475652C187736073 @default.
- W4386475652 hasConceptScore W4386475652C26517878 @default.
- W4386475652 hasConceptScore W4386475652C2778112365 @default.
- W4386475652 hasConceptScore W4386475652C2780451532 @default.
- W4386475652 hasConceptScore W4386475652C38652104 @default.
- W4386475652 hasConceptScore W4386475652C41008148 @default.
- W4386475652 hasConceptScore W4386475652C50644808 @default.
- W4386475652 hasConceptScore W4386475652C54355233 @default.
- W4386475652 hasConceptScore W4386475652C86803240 @default.
- W4386475652 hasConceptScore W4386475652C98045186 @default.
- W4386475652 hasLocation W43864756521 @default.
- W4386475652 hasOpenAccess W4386475652 @default.
- W4386475652 hasPrimaryLocation W43864756521 @default.
- W4386475652 hasRelatedWork W2181305951 @default.
- W4386475652 hasRelatedWork W2329452785 @default.