Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386479765> ?p ?o ?g. }
- W4386479765 abstract "Abstract On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies (contact maps”) as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction." @default.
- W4386479765 created "2023-09-07" @default.
- W4386479765 creator A5008353282 @default.
- W4386479765 creator A5023066254 @default.
- W4386479765 creator A5024295845 @default.
- W4386479765 creator A5030034618 @default.
- W4386479765 creator A5033578312 @default.
- W4386479765 creator A5040176579 @default.
- W4386479765 creator A5053642050 @default.
- W4386479765 creator A5054117069 @default.
- W4386479765 creator A5067996051 @default.
- W4386479765 creator A5070137241 @default.
- W4386479765 creator A5076509535 @default.
- W4386479765 creator A5083544885 @default.
- W4386479765 creator A5089380775 @default.
- W4386479765 date "2023-09-06" @default.
- W4386479765 modified "2023-10-14" @default.
- W4386479765 title "RNA contact prediction by data efficient deep learning" @default.
- W4386479765 cites W1965511886 @default.
- W4386479765 cites W1979762151 @default.
- W4386479765 cites W2008545402 @default.
- W4386479765 cites W2013425283 @default.
- W4386479765 cites W2050110866 @default.
- W4386479765 cites W2051545676 @default.
- W4386479765 cites W2109553965 @default.
- W4386479765 cites W2109839728 @default.
- W4386479765 cites W2130479394 @default.
- W4386479765 cites W2133839648 @default.
- W4386479765 cites W2137566700 @default.
- W4386479765 cites W2138122982 @default.
- W4386479765 cites W2141152740 @default.
- W4386479765 cites W2170471837 @default.
- W4386479765 cites W2321533354 @default.
- W4386479765 cites W2341963847 @default.
- W4386479765 cites W2531307985 @default.
- W4386479765 cites W2557595285 @default.
- W4386479765 cites W2949342052 @default.
- W4386479765 cites W2952317511 @default.
- W4386479765 cites W2963420272 @default.
- W4386479765 cites W2981231296 @default.
- W4386479765 cites W2990528340 @default.
- W4386479765 cites W3015251784 @default.
- W4386479765 cites W3022554208 @default.
- W4386479765 cites W3048620154 @default.
- W4386479765 cites W3098223552 @default.
- W4386479765 cites W3100348855 @default.
- W4386479765 cites W3102476541 @default.
- W4386479765 cites W3102678975 @default.
- W4386479765 cites W3126773939 @default.
- W4386479765 cites W3135161193 @default.
- W4386479765 cites W3146944767 @default.
- W4386479765 cites W3177828909 @default.
- W4386479765 cites W3178087467 @default.
- W4386479765 cites W3184837111 @default.
- W4386479765 cites W3186179742 @default.
- W4386479765 cites W3195820203 @default.
- W4386479765 cites W3208651536 @default.
- W4386479765 cites W3211795435 @default.
- W4386479765 cites W3216341763 @default.
- W4386479765 cites W343636949 @default.
- W4386479765 cites W4213103519 @default.
- W4386479765 cites W4300861364 @default.
- W4386479765 cites W4302362590 @default.
- W4386479765 cites W4304731451 @default.
- W4386479765 doi "https://doi.org/10.1038/s42003-023-05244-9" @default.
- W4386479765 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37674020" @default.
- W4386479765 hasPublicationYear "2023" @default.
- W4386479765 type Work @default.
- W4386479765 citedByCount "0" @default.
- W4386479765 crossrefType "journal-article" @default.
- W4386479765 hasAuthorship W4386479765A5008353282 @default.
- W4386479765 hasAuthorship W4386479765A5023066254 @default.
- W4386479765 hasAuthorship W4386479765A5024295845 @default.
- W4386479765 hasAuthorship W4386479765A5030034618 @default.
- W4386479765 hasAuthorship W4386479765A5033578312 @default.
- W4386479765 hasAuthorship W4386479765A5040176579 @default.
- W4386479765 hasAuthorship W4386479765A5053642050 @default.
- W4386479765 hasAuthorship W4386479765A5054117069 @default.
- W4386479765 hasAuthorship W4386479765A5067996051 @default.
- W4386479765 hasAuthorship W4386479765A5070137241 @default.
- W4386479765 hasAuthorship W4386479765A5076509535 @default.
- W4386479765 hasAuthorship W4386479765A5083544885 @default.
- W4386479765 hasAuthorship W4386479765A5089380775 @default.
- W4386479765 hasBestOaLocation W43864797651 @default.
- W4386479765 hasConcept C104317684 @default.
- W4386479765 hasConcept C108583219 @default.
- W4386479765 hasConcept C112313634 @default.
- W4386479765 hasConcept C119857082 @default.
- W4386479765 hasConcept C127716648 @default.
- W4386479765 hasConcept C153180895 @default.
- W4386479765 hasConcept C154945302 @default.
- W4386479765 hasConcept C188082640 @default.
- W4386479765 hasConcept C41008148 @default.
- W4386479765 hasConcept C50644808 @default.
- W4386479765 hasConcept C55493867 @default.
- W4386479765 hasConcept C86803240 @default.
- W4386479765 hasConcept C95623464 @default.
- W4386479765 hasConceptScore W4386479765C104317684 @default.
- W4386479765 hasConceptScore W4386479765C108583219 @default.
- W4386479765 hasConceptScore W4386479765C112313634 @default.